A359948 Lexicographically earliest sequence of primes whose partial products lie between noncomposite numbers.
2, 2, 3, 5, 3, 13, 5, 7, 41, 13, 83, 109, 347, 337, 127, 67, 379, 499, 739, 4243, 2311, 1973, 5827, 7333, 971, 3449, 3967, 3407, 12671, 1423, 859, 20641, 7237, 769, 9209, 281, 12919, 16633, 11383, 30449, 6733, 40627, 34591, 1103, 14303, 5479, 4603, 17477, 5113, 51001, 36299, 57037, 1153, 34297, 1237
Offset: 1
Keywords
Examples
2 - 1 = 1 and 2 + 1 = 3 are both noncomposites. 2*2 - 1 = 3 and 2*2 + 1 = 5 are both primes. 2*2*3 - 1 = 11 and 2*2*3 + 1 = 13 are both primes. 2*2*3*5 - 1 = 59 and 2*2*3*5 + 1 = 61 are both primes.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..160
Programs
-
Maple
R:= 2: s:= 2: for i from 2 to 60 do p:= 1: do p:= nextprime(p); if isprime(p*s-1) and isprime(p*s+1) then R:= R,p; s:= p*s; break fi; od od: R;
-
Mathematica
a[1] = 2; a[n_] := a[n] = Module[{r = Product[a[k], {k, 1, n - 1}], p = 2}, While[! PrimeQ[r*p - 1] || ! PrimeQ[r*p + 1], p = NextPrime[p]]; p]; Array[a, 55] (* Amiram Eldar, Jan 19 2023 *)
-
Python
from itertools import islice from sympy import isprime, nextprime def agen(): # generator of terms s = 2; yield 2 while True: p = 2 while True: if isprime(s*p-1) and isprime(s*p+1): yield p; s *= p; break p = nextprime(p) print(list(islice(agen(), 55))) # Michael S. Branicky, Jan 19 2023
Comments