A360000 Number of directed cycles in the 2-Fibonacci digraph of order n.
2, 3, 4, 8, 16, 61, 437, 17766, 5885824, 111327315589
Offset: 1
Examples
For n = 4 there are a(4) = 8 cycles: 0000 -> 0000; 0101 -> 1010 -> 0101; 0010 -> 0100 -> 1001 -> 0010; 0001 -> 0010 -> 0100 -> 1000 -> 0001; 0000 -> 0001 -> 0010 -> 0100 -> 1000 -> 0000; 0010 -> 0101 -> 1010 -> 0100 -> 1001 -> 0010; 0001 -> 0010 -> 0101 -> 1010 -> 0100 -> 1000 -> 0001; 0000 -> 0001 -> 0010 -> 0101 -> 1010 -> 0100 -> 1000 -> 0000.
Links
- C. Dalfó and M. A. Fiol, On d-Fibonacci digraphs, arXiv:1909.06766 [math.CO], 2019.
Programs
-
Python
import networkx as nx def F(n): return nx.DiGraph(((0,0),(0,1),(1,0))) if n == 1 else nx.line_graph(F(n-1)) def A360000(n): return sum(1 for c in nx.simple_cycles(F(n)))
Extensions
a(10) from Bert Dobbelaere, Jan 24 2023
Comments