A360013 Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents.
2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 200, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256
Offset: 1
Examples
From _Gus Wiseman_, Jul 09 2023: (Start) 108 = 2*2*3*3*3 is missing because its mode is not 2. 180 = 2*2*3*3*5 is missing because 2 is not the unique mode. 120 = 2*2*2*3*5 is present because its unique mode is 2. The terms together with their prime factorizations begin: 2 = 2 4 = 2*2 8 = 2*2*2 12 = 2*2*3 16 = 2*2*2*2 20 = 2*2*5 24 = 2*2*2*3 28 = 2*2*7 32 = 2*2*2*2*2 40 = 2*2*2*5 44 = 2*2*11 48 = 2*2*2*2*3 52 = 2*2*13 56 = 2*2*2*7 60 = 2*2*3*5 64 = 2*2*2*2*2*2 (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{e = IntegerExponent[n, 2], m}, m = n/2^e; (m == 1 && e > 0) || AllTrue[FactorInteger[m][[;; , 2]], # < e &]]; Select[Range[256], q]
-
PARI
is(n) = {my(e = valuation(n, 2), m = n >> e); (m == 1 && e > 0) || (m > 1 && vecmax(factor(m)[,2]) < e)};
Formula
a(n) = 2*A360015(n). - Gus Wiseman, Jul 10 2023
Comments