A360015 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximal exponent.
1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 100, 102, 104, 106, 110, 112, 114, 116, 118, 120, 122, 124, 128, 130, 132, 134, 136, 138
Offset: 1
Examples
From _Gus Wiseman_, Jul 14 2023: (Start) 108 = 2*2*3*3*3 is missing because its mode is not 2. 180 = 2*2*3*3*5 is present because it has low mode 2. The terms together with their prime factorizations begin: 1 = 2 = 2 4 = 2*2 6 = 2*3 8 = 2*2*2 10 = 2*5 12 = 2*2*3 14 = 2*7 16 = 2*2*2*2 20 = 2*2*5 22 = 2*11 24 = 2*2*2*3 26 = 2*13 28 = 2*2*7 30 = 2*3*5 32 = 2*2*2*2*2 34 = 2*17 36 = 2*2*3*3 (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := IntegerExponent[n, 2] == Max[FactorInteger[n][[;; , 2]]]; q[1] = True; Select[Range[150], q]
-
PARI
is(n) = n == 1 || vecmax(factor(n)[,2]) == valuation(n, 2);
Formula
a(n) = A360013(n)/2. - Gus Wiseman, Jul 14 2023
Comments