cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360097 a(n) = smallest k such that 2*n*k-1 and 2*n*k+1 are nonprimes.

Original entry on oeis.org

13, 14, 20, 7, 5, 10, 4, 4, 8, 6, 7, 5, 1, 2, 4, 2, 1, 4, 2, 3, 17, 4, 2, 3, 1, 4, 4, 1, 2, 2, 2, 1, 8, 3, 8, 2, 4, 1, 8, 2, 3, 11, 1, 2, 10, 1, 1, 3, 4, 3, 2, 2, 4, 2, 2, 5, 3, 1, 1, 1, 1, 1, 9, 4, 2, 4, 1, 4, 3, 4, 1, 1, 1, 2, 2, 2, 1, 4, 3, 1, 2, 2, 4, 7, 1
Offset: 1

Views

Author

Tamas Sandor Nagy, Jan 25 2023

Keywords

Examples

			We try 1..k until the condition is met:
a(7) != 1 because 2*7*1 = 14 and 14 - 1 = 13, a prime.
a(7) != 2 because 2*7*2 = 28 and 28 + 1 = 29, a prime.
a(7) != 3 because 2*7*3 = 42 and 42 - 1 = 41 and 42 + 1 = 43, both primes.
a(7) = 4 because 2*7*4 = 56 and 56 - 1 = 55 and 56 + 1 = 57 are both nonprimes.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
        for k from 1 do
          if not isprime(2*n*k-1) and not isprime(2*n*k+1) then return k fi
        od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 07 2023
  • Mathematica
    a[n_] := Module[{k = 1}, While[PrimeQ[2*n*k - 1] || PrimeQ[2*n*k + 1], k++]; k]; Array[a, 100] (* Amiram Eldar, Jan 25 2023 *)
  • PARI
    a(n) = my(k=1); while(isprime(2*n*k-1) || isprime(2*n*k+1), k++); k; \\ Michel Marcus, Jan 25 2023
  • Python
    from sympy import isprime
    from itertools import count
    def a(n): return next(k for k in count(1) if not isprime(2*n*k-1) and not isprime(2*n*k+1))
    print([a(n) for n in range(1, 86)]) # Michael S. Branicky, Jan 25 2023
    

Extensions

More terms from Michael S. Branicky, Jan 25 2023