A360141 Bitwise encoding of the right half, initially empty, state of the 1D cellular automaton from A359303 after n steps.
0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 9, 10, 10, 11, 12, 19, 20, 21, 21, 21, 22, 25, 38, 41, 42, 42, 43, 44, 51, 76, 83, 84, 85, 85, 85, 86, 89, 102, 153, 166, 169, 170, 170, 170, 171, 172, 179, 204, 307, 332, 339, 340, 341, 341, 341, 342, 345, 358, 409, 614, 665
Offset: 0
Examples
Following the state progression from A359303 (state(n)) is converted to the sequence (a(n)) by: state(0) = ..1111|0000.. |0000.. a(0) = 0 = \---> bits 000.. state(1) = ..1110|1000.. |1000.. a(1) = 1 = \---> bits 100.. state(2) = ..111101|10000.. |10000.. a(2) = 1 = \---> bits 100.. state(3) = ..111101|01000.. |01000.. a(3) = 2 = \---> bits 01000.. state(4) = ..111011|01000.. a(4) = 2 = \---> bits 01000.. state(5) = ..111010|11000.. a(5) = 3 = \---> bits 11000..
Links
- Kevin Ryde, Table of n, a(n) for n = 0..3000
- Kevin Ryde, PARI/GP Code
Programs
-
Mathematica
ClearAll[{s, prop, checkprop, doprop, p, a, j,runpos}]; prop[s_]:=(p=Array[0#&, Length[s]]; Do[If[i==1 ||i==Length[s], p[[i]]=0, {p[[i-1]], p[[i]], p[[i+1]]}+= Piecewise[{{{1, -1, 0}, {s[[i-1]], s[[i]], s[[i+1]]}=={0, 1, 1}}, {{0, -1, 1}, {s[[i-1]], s[[i]], s[[i+1]]}=={1, 1, 0}}}, {0, 0, 0}]], {i, 1, Length[s]-1} ]; Return[p]) checkprop[s_]:=(p=s; Do[If[p[[i]]==2, {p[[i-1]], p[[i]], p[[i+1]]}={0, 0, 0}], {i, 2, Length[s]-1}]; Return[p]) doprop[s_]:= Return[s +checkprop[prop[s]]] (* show only positive states: *) runpos[n_]:=( s=Join[Array[#/#&, n+5], Array[0#&, n+5]] ; Table[Drop[Nest[doprop[#]&, s, k],n+5], {k, 0, n}]) (* conversion from the automaton states to integers *) (* a[10] returns {0,1,1,2,2,3,4,5,5,6,9} *) a[j_]:=Table[FromDigits[Reverse[runpos[j+1][[k, All]]],2], {k, 1, j+1}]
-
PARI
\\ See links.
Comments