A360142 Bitwise encoding of the left half, initially fully occupied, state of the 1D cellular automaton from A359303 after n steps.
0, 1, 2, 2, 4, 5, 8, 9, 10, 17, 18, 18, 20, 35, 36, 37, 40, 69, 73, 74, 81, 138, 145, 146, 146, 148, 163, 276, 291, 292, 293, 296, 325, 553, 582, 585, 586, 593, 650, 1105, 1162, 1169, 1170, 1172, 1187, 1300, 2211, 2324, 2339, 2340, 2341, 2344, 2373, 2601
Offset: 0
Examples
Following the state progression from A359303 (state(n)) is converted to the sequence (a(n)) by: state(0) = ..1111|0000.. ..1111| ..0000| a(0) = 0 = bits 0 state(1) = ..1110|1000.. ..1110| ..0001| a(1) = 1 = bits 1 state(2) = ..111101|10000.. ..111101| ..000010| a(2) = 2 = bits 10 state(3) = ..111101|10000.. ..111101| ..000010| a(3) = 2 = bits 10 state(4) = ..111011|01000.. ..111011| ..000100| a(4) = 4 = bits 100 state(5) = ..111010|11000.. ..111010| ..000101| a(5) = 5 = bits 101
Links
- Kevin Ryde, Table of n, a(n) for n = 0..3000
- Kevin Ryde, PARI/GP Code
Programs
-
Mathematica
ClearAll[{s, prop, checkprop, doprop, run, p, a, j,runneg}]; prop[s_]:=(p=Array[0#&, Length[s]]; Do[If[i==1 ||i==Length[s], p[[i]]=0, {p[[i-1]], p[[i]], p[[i+1]]}+= Piecewise[{{{1, -1, 0}, {s[[i-1]], s[[i]], s[[i+1]]}=={0, 1, 1}}, {{0, -1, 1}, {s[[i-1]], s[[i]], s[[i+1]]}=={1, 1, 0}}}, {0, 0, 0}]], {i, 1, Length[s]-1} ]; Return[p]) checkprop[s_]:=(p=s; Do[If[p[[i]]==2, {p[[i-1]], p[[i]], p[[i+1]]}={0, 0, 0}], {i, 2, Length[s]-1}]; Return[p]) doprop[s_]:= Return[s +checkprop[prop[s]]] runneg[n_]:=( s=Join[Array[#/#&, n+5], Array[0#&, n+5]] ; Table[Drop[Nest[doprop[#]&, s, k],-(n+5)], {k, 0, n}]) a[j_]:=FromDigits[(runneg[j+1]/.{0->1,1->0})[[j+1, All]],2] (* Table[a[n],{n,0,10,1}] *) (* returns the first 11 elements *) (* {0,1,2,2,4,5,8,9,10,17,18} *)
-
PARI
\\ See links.
Comments