cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360157 a(n) is the number of unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A298735 at n = 27.
The unitary analog of A298735.
The least term that is larger than 2 is a(225) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, 2]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, if(f[i, 1] == 2, 1, 2)));}

Formula

Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = 1 if e is odd and 2 if e is even.
Dirichlet g.f.: (zeta(s)*zeta(2*s)/zeta(3*s)) * (4^s + 2^s)/(4^s + 2^s + 1).
Sum_{k=1..n} a(k) ~ c * n, where c = Pi^2/(7*zeta(3)) = 1.172942380817... .
More precise asymptotics: Sum_{k=1..n} a(k) ~ Pi^2 * n / (7*zeta(3)) + (4 + sqrt(2)) * zeta(1/2) * sqrt(n) / (7*zeta(3/2)). - Vaclav Kotesovec, Jan 29 2023