cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360159 a(n) is the sum of divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 50, 26, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 26, 1, 1, 1, 1, 1, 91, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(2*(f[i, 2]\2)+2)-1)/(f[i, 1]^2-1))); }

Formula

a(n) = Sum_{d|n, d odd square} d.
a(n) = (A035316(n) + A344300(n))/2.
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = (p^(e+1)-1)/(p^2-1) for odd e.
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-4^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/6 = 0.4353958914... .