A360159 a(n) is the sum of divisors of n that are odd squares.
1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 50, 26, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 26, 1, 1, 1, 1, 1, 91, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(2*(f[i, 2]\2)+2)-1)/(f[i, 1]^2-1))); }
Formula
a(n) = Sum_{d|n, d odd square} d.
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = (p^(e+1)-1)/(p^2-1) for odd e.
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-4^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/6 = 0.4353958914... .