cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360177 Triangle read by rows. T(n, k) = 1 if n = k, otherwise T(n, k) = Sum_{j=0..k-1} (-1)^(j - k - 1) * (n + j + 1)^(n-1) / (j! * (k - 1 - j)!).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 9, 1, 0, 125, 91, 18, 1, 0, 1296, 1105, 295, 30, 1, 0, 16807, 15961, 5160, 725, 45, 1, 0, 262144, 269297, 99631, 17290, 1505, 63, 1, 0, 4782969, 5217031, 2135070, 431221, 46970, 2786, 84, 1, 0, 100000000, 114358881, 50631967, 11477046, 1471701, 110250, 4746, 108, 1
Offset: 0

Views

Author

Peter Luschny, Jan 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       3,       1;
[3] 0,      16,       9,       1;
[4] 0,     125,      91,      18,      1;
[5] 0,    1296,    1105,     295,     30,     1;
[6] 0,   16807,   15961,    5160,    725,    45,     1;
[7] 0,  262144,  269297,   99631,  17290,  1505,    63,  1;
[8] 0, 4782969, 5217031, 2135070, 431221, 46970,  2786, 84, 1;
		

Crossrefs

Cf. A124824 (row sums), A000272 (column 1), A045943 (subdiagonal).

Programs

  • Maple
    A360177 := (n, k) -> if n = k then 1 else
    add((-1)^(u-k-1)*(n+u+1)^(n-1)/(u!*(k-1-u)!), u = 0.. k-1) fi:
    for n from 0 to 8 do seq(A360177(n, k), k = 0..n) od;
    # Alternative:
    egf := k -> (-LambertW(-x)/x - 1)^k / k!:
    ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n):
    for n from 0 to 8 do print(seq(T(n, k), k = 0..n)) od;

Formula

T(n, k) = n! * [x^n] ((-LambertW(-x)/x - 1)^k / k!).