cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360176 Triangle read by rows. T(n, k) = Sum_{j=k..n} binomial(n, j) * (-j)^(n - j) * (-1)^(j - k)* A360177(j, k).

Original entry on oeis.org

1, 0, 1, 0, -5, 1, 0, 37, -15, 1, 0, -393, 223, -30, 1, 0, 5481, -3815, 745, -50, 1, 0, -95053, 76051, -18870, 1865, -75, 1, 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1, 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1
Offset: 0

Views

Author

Peter Luschny, Jan 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,         1;
[2] 0,        -5,        1;
[3] 0,        37,      -15,         1;
[4] 0,      -393,      223,       -30,       1;
[5] 0,      5481,    -3815,       745,     -50,       1;
[6] 0,    -95053,    76051,    -18870,    1865,     -75,    1;
[7] 0,   1975821, -1749811,    514381,  -65730,    3920, -105,    1;
[8] 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1;
		

Crossrefs

Cf. A360177, A273954 (column 1), A028895 (subdiagonal).

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j) * (-j)^(n - j) * (-1)^(j - k) * A360177(j, k), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Alternative:
    egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!:
    ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;

Formula

E.g.f. of column k: (1 - exp(-LambertW(x*exp(-x))))^k / k!.

A008297 Triangle of Lah numbers.

Original entry on oeis.org

-1, 2, 1, -6, -6, -1, 24, 36, 12, 1, -120, -240, -120, -20, -1, 720, 1800, 1200, 300, 30, 1, -5040, -15120, -12600, -4200, -630, -42, -1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, -362880, -1451520, -1693440, -846720, -211680, -28224, -2016, -72, -1, 3628800, 16329600, 21772800, 12700800
Offset: 1

Views

Author

Keywords

Comments

|a(n,k)| = number of partitions of {1..n} into k lists, where a list means an ordered subset.
Let N be a Poisson random variable with parameter (mean) lambda, and Y_1,Y_2,... independent exponential(theta) variables, independent of N, so that their density is given by (1/theta)*exp(-x/theta), x > 0. Set S=Sum_{i=1..N} Y_i. Then E(S^n), i.e., the n-th moment of S, is given by (theta^n) * L_n(lambda), n >= 0, where L_n(y) is the Lah polynomial Sum_{k=0..n} |a(n,k)| * y^k. - Shai Covo (green355(AT)netvision.net.il), Feb 09 2010
For y = lambda > 0, formula 2) for the Lah polynomial L_n(y) dated Feb 02 2010 can be restated as follows: L_n(lambda) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) lambda. - Shai Covo (green355(AT)netvision.net.il), Feb 10 2010
See A111596 for an expression of the row polynomials in terms of an umbral composition of the Bell polynomials and relation to an inverse Mellin transform and a generalized Dobinski formula. - Tom Copeland, Nov 21 2011
Also the Bell transform of the sequence (-1)^(n+1)*(n+1)! without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Named after the Slovenian mathematician and actuary Ivo Lah (1896-1979). - Amiram Eldar, Jun 13 2021

Examples

			|a(2,1)| = 2: (12), (21); |a(2,2)| = 1: (1)(2). |a(4,1)| = 24: (1234) (24 ways); |a(4,2)| = 36: (123)(4) (6*4 ways), (12)(34) (3*4 ways); |a(4,3)| = 12: (12)(3)(4) (6*2 ways); |a(4,4)| = 1: (1)(2)(3)(4) (1 way).
Triangle:
    -1;
     2,    1;
    -6,   -6,   -1;
    24,   36,   12,   1;
  -120, -240, -120, -20, -1; ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • Shai Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci., Vol. 7, No. 1 (2009), pp. 91-100.
  • Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176; the sequence called {!}^{n+}. For a link to this paper see A000262.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985; see p. 176.

Crossrefs

Same as A066667 and A105278 except for signs. Other variants: A111596 (differently signed triangle and (0,0)-based), A271703 (unsigned and (0,0)-based), A089231.
A293125 (row sums) and A000262 (row sums of unsigned triangle).
Columns 1-6 (unsigned): A000142, A001286, A001754, A001755, A001777, A001778.
A002868 gives maximal element (in magnitude) in each row.
A248045 (central terms, negated). A130561 is a natural refinement.

Programs

  • Haskell
    a008297 n k = a008297_tabl !! (n-1) !! (k-1)
    a008297_row n = a008297_tabl !! (n-1)
    a008297_tabl = [-1] : f [-1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = map negate $
              zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014
    
  • Maple
    A008297 := (n,m) -> (-1)^n*n!*binomial(n-1,m-1)/m!;
  • Mathematica
    a[n_, m_] := (-1)^n*n!*Binomial[n-1, m-1]/m!; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after Maple *)
    T[n_, n_] := (-1)^n; T[n_, k_]/;0Oliver Seipel, Dec 06 2024 *)
  • PARI
    T(n, m) = (-1)^n*n!*binomial(n-1, m-1)/m!
    for(n=1,9, for(m=1,n, print1(T(n,m)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Perl
    use bigint; use ntheory ":all"; my @L; for my $n (1..9) { push @L, map { stirling($n,$,3)*(-1)**$n } 1..$n; } say join(", ",@L); # _Dana Jacobsen, Mar 16 2017
  • Sage
    def A008297_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2+2*k)*M[n-1,k]+((k+1)*(k+2))*M[n-1,k+1]
        return M
    A008297_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = (-1)^n*n!*A007318(n-1, m-1)/m!, n >= m >= 1.
a(n+1, m) = (n+m)*a(n, m)+a(n, m-1), a(n, 0) := 0; a(n, m) := 0, n < m; a(1, 1)=1.
a(n, m) = ((-1)^(n-m+1))*L(1, n-1, m-1) where L(1, n, m) is the triangle of coefficients of the generalized Laguerre polynomials n!*L(n, a=1, x). These polynomials appear in the radial l=0 eigen-functions for discrete energy levels of the H-atom.
|a(n, m)| = Sum_{k=m..n} |A008275(n, k)|*A008277(k, m), where A008275 = Stirling numbers of first kind, A008277 = Stirling numbers of second kind. - Wolfdieter Lang
If L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then the e.g.f. for L_n(y) is exp(x*y/(1-x)). - Vladeta Jovovic, Jan 06 2001
E.g.f. for the k-th column (unsigned): x^k/(1-x)^k/k!. - Vladeta Jovovic, Dec 03 2002
a(n, k) = (n-k+1)!*N(n, k) where N(n, k) is the Narayana triangle A001263. - Philippe Deléham, Jul 20 2003
From Shai Covo (green355(AT)netvision.net.il), Feb 02 2010: (Start)
We have the following expressions for the Lah polynomial L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k -- exact generalizations of results in A000262 for A000262(n) = L_n(1):
1) L_n(y) = y*exp(-y)*n!*M(n+1,2,y), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind;
2) L_n(y) = exp(-y)* Sum_{m>=0} y^m*[m]^n/m!, n>=0, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial;
3) L_n(y) = (2n-2+y)L_{n-1}(y)-(n-1)(n-2)L_{n-2}(y), n>=2;
4) L_n(y) = y*(n-1)!*Sum_{k=1..n} (L_{n-k}(y) k!)/((n-k)! (k-1)!), n>=1. (End)
The row polynomials are given by D^n(exp(-x*t)) evaluated at x = 0, where D is the operator (1-x)^2*d/dx. Cf. A008277 and A035342. - Peter Bala, Nov 25 2011
n!C(-xD,n) = Lah(n,:xD:) where C(m,n) is the binomial coefficient, xD= x d/dx, (:xD:)^k = x^k D^k, and Lah(n,x) are the row polynomials of this entry. E.g., 2!C(-xD,2)= 2 xD + x^2 D^2. - Tom Copeland, Nov 03 2012
From Tom Copeland, Sep 25 2016: (Start)
The Stirling polynomials of the second kind A048993 (A008277), i.e., the Bell-Touchard-exponential polynomials B_n[x], are umbral compositional inverses of the Stirling polynomials of the first kind signed A008275 (A130534), i.e., the falling factorials, (x)_n = n! binomial(x,n); that is, umbrally B_n[(x).] = x^n = (B.[x])_n.
An operational definition of the Bell polynomials is (xD_x)^n = B_n[:xD:], where, by definition, (:xD_x:)^n = x^n D_x^n, so (B.[:xD_x:])_n = (xD_x)_n = :xD_x:^n = x^n (D_x)^n.
Let y = 1/x, then D_x = -y^2 D_y; xD_x = -yD_y; and P_n(:yD_y:) = (-yD_y)_n = (-1)^n (1/y)^n (y^2 D_y)^n, the row polynomials of this entry in operational form, e.g., P_3(:yD_y:) = (-yD_y)_3 = (-yD_y) (yD_y-1) (yD_y-2) = (-1)^3 (1/y)^3 (y^2 D_y)^3 = -( 6 :yD_y: + 6 :yD_y:^2 + :yD_y:^3 ) = - ( 6 y D_y + 6 y^2 (D_y)^2 + y^3 (D_y)^3).
Therefore, P_n(y) = e^(-y) P_n(:yD_y:) e^y = e^(-y) (-1/y)^n (y^2 D_y)^n e^y = e^(-1/x) x^n (D_x)^n e^(1/x) = P_n(1/x) and P_n(x) = e^(-1/x) x^n (D_x)^n e^(1/x) = e^(-1/x) (:x D_x:)^n e^(1/x). (Cf. also A094638.) (End)
T(n,k) = Sum_{j=k..n} (-1)^j*A008296(n,j)*A360177(j,k). - Mélika Tebni, Feb 02 2023

A271703 Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 36, 12, 1, 0, 120, 240, 120, 20, 1, 0, 720, 1800, 1200, 300, 30, 1, 0, 5040, 15120, 12600, 4200, 630, 42, 1, 0, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 0, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Comments

The Lah numbers can be seen as the case m=1 of the family of triangles T_{m}(n,k) = T_{m}(n-1,k-1)+(k^m+(n-1)^m)*T_{m}(n-1,k) (see the link 'Partition transform').
This is the Sheffer triangle (lower triangular infinite matrix) (1, x/(1-x)), an element of the Jabotinsky subgroup of the Sheffer group. - Wolfdieter Lang, Jun 12 2017

Examples

			As a rectangular array (diagonals of the triangle):
  1,      1,       1,       1,       1,       1,       ... A000012
  0,      2,       6,       12,      20,      30,      ... A002378
  0,      6,       36,      120,     300,     630,     ... A083374
  0,      24,      240,     1200,    4200,    11760,   ... A253285
  0,      120,     1800,    12600,   58800,   211680,  ...
  0,      720,     15120,   141120,  846720,  3810240, ...
A000007, A000142, A001286, A001754, A001755,  A001777.
The triangle T(n,k) begins:
n\k 0       1        2        3        4       5      6     7    8  9 10 ...
0:  1
1:  0       1
2:  0       2        1
3:  0       6        6        1
4:  0      24       36       12        1
5:  0     120      240      120       20       1
6:  0     720     1800     1200      300      30      1
7:  0    5040    15120    12600     4200     630     42     1
8:  0   40320   141120   141120    58800   11760   1176    56    1
9:  0  362880  1451520  1693440   846720  211680  28224  2016   72  1
10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90  1
...  - _Wolfdieter Lang_, Jun 12 2017
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.
  • I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.
  • T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016

Crossrefs

Variants: A008297 the main entry for these numbers, A105278, A111596 (signed).
A000262 (row sums). Largest number of the n-th row in A002868.

Programs

  • Maple
    T := (n, k) -> `if`(n=k, 1, binomial(n-1,k-1)*n!/k!):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    @cached_function
    def T(n,k):
        if k<0 : return 0
        if k==n: return 1
        return T(n-1,k-1) + (k+n-1)*T(n-1,k)
    for n in (0..8): print([T(n,k) for k in (0..n)])

Formula

For a collection of formulas see the 'Lah numbers' link.
T(n, k) = A097805(n, k)*n!/k! = (-1)^k*P_{n, k}(1,1,1,...) where P_{n, k}(s) is the partition transform of s.
T(n, k) = coeff(n! * P(n), x, k) with P(n) = (1/n)*(Sum_{k=0..n-1}(x(n-k)*P(k))), for n >= 1 and P(n=0) = 1, with x(n) = n*x. See A036039. - Johannes W. Meijer, Jul 08 2016
From Wolfdieter Lang, Jun 12 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (that is egf of the triangle) is exp(x*t/(1-t)) (a Sheffer triangle of the Jabotinsky type).
E.g.f. column k: (t/(1-t))^k/k!.
Three term recurrence: T(n, k) = T(n-1, k-1) + (n-1+k)*T(n, k-1), n >= 1, k = 0..n, with T(0, 0) =1, T(n, -1) = 0, T(n, k) = 0 if n < k.
T(n, k) = binomial(n, k)*fallfac(x=n-1, n-k), with fallfac(x, n) = Product_{j=0..(n-1)} (x - j), for n >= 1, and 0 for n = 0.
risefac(x, n) = Sum_{k=0..n} T(n, k)*fallfac(k), with risefac(x, n) = Product_{j=0..(n-1)} (x + j), for n >= 1, and 0 for n = 0.
See Graham et al., exercise 31, p. 312, solution p. 552. (End)
Formally, let f_n(x) = Sum_{k>n} (k-1)!*x^k; then f_n(x) = Sum_{k=0..n} T(n, k)* x^(n+k)*f_0^((k))(x), where ^((k)) stands for the k-th derivative. - Luc Rousseau, Dec 27 2020
T(n, k) = Sum_{j=k..n} A354795(n, j)*A360177(j, k). - Mélika Tebni, Feb 02 2023
T(n, k) = binomial(n, k)*(n-1)!/(k-1)! for n, k > 0. - Chai Wah Wu, Nov 30 2023
Showing 1-3 of 3 results.