cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360185 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-4*k,n-2*k).

Original entry on oeis.org

1, 2, 5, 18, 65, 234, 859, 3198, 12011, 45422, 172745, 660010, 2531411, 9740590, 37585189, 145376930, 563495201, 2188229290, 8511640099, 33157034510, 129334888721, 505100839930, 1974764074999, 7728329887670, 30272839608101, 118682276550082, 465645693340003
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2023

Keywords

Crossrefs

Programs

  • Maple
    A360185 := proc(n)
        add((-1)^k*binomial(2*n-4*k,n-2*k),k=0..n/2) ;
    end proc:
    seq(A360185(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-4*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^2)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^2) ).
a(n) ~ 2^(2*n + 4) / (17*sqrt(Pi*n)). - Vaclav Kotesovec, Jan 29 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) +n*a(n-2) +2*(-2*n+1)*a(n-3)=0. - R. J. Mathar, Mar 12 2023
a(n)+a(n-2) = A000984(n). - R. J. Mathar, Mar 12 2023