A360189 Triangle T(n,k), n>=0, 0<=k<=floor(log_2(n+1)), read by rows: T(n,k) = number of nonnegative integers <= n having binary weight k.
1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 4, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 1, 4, 5, 2, 1, 4, 6, 2, 1, 4, 6, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 1, 5, 6, 4, 1, 1, 5, 7, 4, 1, 1, 5, 8, 4, 1, 1, 5, 8, 5, 1, 1, 5, 9, 5, 1, 1, 5, 9, 6, 1, 1, 5, 9, 7, 1
Offset: 0
Examples
T(6,2) = 3: 3, 5, 6, or in binary: 11_2, 101_2, 110_2. T(15,3) = 4: 7, 11, 13, 14, or in binary: 111_2, 1011_2, 1101_2, 1110_2. Triangle T(n,k) begins: 1; 1, 1; 1, 2; 1, 2, 1; 1, 3, 1; 1, 3, 2; 1, 3, 3; 1, 3, 3, 1; 1, 4, 3, 1; 1, 4, 4, 1; 1, 4, 5, 1; 1, 4, 5, 2; 1, 4, 6, 2; 1, 4, 6, 3; 1, 4, 6, 4; 1, 4, 6, 4, 1; ...
Links
- Alois P. Heinz, Rows n = 0..2^12-1, flattened
- Peter J. Taylor, Closed form for Sum_{k=0..n} [wt(k) = m] where wt(n) is the binary weight of n, answer to question on MathOverflow (2024).
- Wikipedia, Iverson bracket
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<0, 0, b(n-1)+x^add(i, i=Bits[Split](n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)): seq(T(n), n=0..23);
-
PARI
T(n,k) = my(v1); v1 = Vecrev(binary(n+1)); v1 = Vecrev(select(x->(x>0),v1,1)); sum(j=0, min(k,#v1-1), binomial(v1[j+1]-1,k-j)) \\ Mikhail Kurkov, Nov 27 2024
Formula
T(n,k) = T(n-1,k) + [A000120(n) = k] where [] is the Iverson bracket and T(n,k) = 0 for n<0.
T(2^n-1,k) = A007318(n,k) = binomial(n,k).
T(n,floor(log_2(n+1))) = A090996(n+1).
Sum_{k>=0} T(n,k) = n+1.
Sum_{k>=0} k * T(n,k) = A000788(n).
Sum_{k>=0} k^2 * T(n,k) = A231500(n).
Sum_{k>=0} k^3 * T(n,k) = A231501(n).
Sum_{k>=0} k^4 * T(n,k) = A231502(n).
Sum_{k>=0} 2^k * T(n,k) = A006046(n+1).
Sum_{k>=0} 3^k * T(n,k) = A130665(n).
Sum_{k>=0} 4^k * T(n,k) = A116520(n+1).
Sum_{k>=0} 5^k * T(n,k) = A130667(n+1).
Sum_{k>=0} 6^k * T(n,k) = A116522(n+1).
Sum_{k>=0} 7^k * T(n,k) = A161342(n+1).
Sum_{k>=0} 8^k * T(n,k) = A116526(n+1).
Sum_{k>=0} 10^k * T(n,k) = A116525(n+1).
Sum_{k>=0} n^k * T(n,k) = A361257(n).
T(n,k) = Sum_{j=0..min(k, A000120(n+1)-1)} binomial(A272020(n+1,j+1)-1,k-j) for n >= 0, k >= 0 (see Peter J. Taylor link). - Mikhail Kurkov, Nov 27 2024
Comments