cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360189 Triangle T(n,k), n>=0, 0<=k<=floor(log_2(n+1)), read by rows: T(n,k) = number of nonnegative integers <= n having binary weight k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 4, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 1, 4, 5, 2, 1, 4, 6, 2, 1, 4, 6, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 1, 5, 6, 4, 1, 1, 5, 7, 4, 1, 1, 5, 8, 4, 1, 1, 5, 8, 5, 1, 1, 5, 9, 5, 1, 1, 5, 9, 6, 1, 1, 5, 9, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2023

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. Terms that are not in the triangle are zero.

Examples

			T(6,2) = 3: 3, 5, 6, or in binary: 11_2, 101_2, 110_2.
T(15,3) = 4: 7, 11, 13, 14, or in binary: 111_2, 1011_2, 1101_2, 1110_2.
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2;
  1, 2, 1;
  1, 3, 1;
  1, 3, 2;
  1, 3, 3;
  1, 3, 3, 1;
  1, 4, 3, 1;
  1, 4, 4, 1;
  1, 4, 5, 1;
  1, 4, 5, 2;
  1, 4, 6, 2;
  1, 4, 6, 3;
  1, 4, 6, 4;
  1, 4, 6, 4, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A029837(n+1) = A113473(n) for n>0, A340068(n+1).
Last elements of rows give A090996(n+1).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0,
          b(n-1)+x^add(i, i=Bits[Split](n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..23);
  • PARI
    T(n,k) = my(v1); v1 = Vecrev(binary(n+1)); v1 = Vecrev(select(x->(x>0),v1,1)); sum(j=0, min(k,#v1-1), binomial(v1[j+1]-1,k-j)) \\ Mikhail Kurkov, Nov 27 2024

Formula

T(n,k) = T(n-1,k) + [A000120(n) = k] where [] is the Iverson bracket and T(n,k) = 0 for n<0.
T(2^n-1,k) = A007318(n,k) = binomial(n,k).
T(n,floor(log_2(n+1))) = A090996(n+1).
Sum_{k>=0} T(n,k) = n+1.
Sum_{k>=0} k * T(n,k) = A000788(n).
Sum_{k>=0} k^2 * T(n,k) = A231500(n).
Sum_{k>=0} k^3 * T(n,k) = A231501(n).
Sum_{k>=0} k^4 * T(n,k) = A231502(n).
Sum_{k>=0} 2^k * T(n,k) = A006046(n+1).
Sum_{k>=0} 3^k * T(n,k) = A130665(n).
Sum_{k>=0} 4^k * T(n,k) = A116520(n+1).
Sum_{k>=0} 5^k * T(n,k) = A130667(n+1).
Sum_{k>=0} 6^k * T(n,k) = A116522(n+1).
Sum_{k>=0} 7^k * T(n,k) = A161342(n+1).
Sum_{k>=0} 8^k * T(n,k) = A116526(n+1).
Sum_{k>=0} 10^k * T(n,k) = A116525(n+1).
Sum_{k>=0} n^k * T(n,k) = A361257(n).
T(n,k) = Sum_{j=0..min(k, A000120(n+1)-1)} binomial(A272020(n+1,j+1)-1,k-j) for n >= 0, k >= 0 (see Peter J. Taylor link). - Mikhail Kurkov, Nov 27 2024