cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360197 Number of induced cycles in the 4 X n grid graph.

Original entry on oeis.org

0, 3, 9, 24, 58, 125, 251, 490, 948, 1823, 3485, 6636, 12614, 23961, 45495, 86350, 163856, 310899, 589873, 1119144, 2123266, 4028261, 7642379, 14499018, 27507300, 52186343, 99006909, 187833924, 356354718, 676068905, 1282624071, 2433368030, 4616535768
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2023

Keywords

Examples

			The a(3) = 9 chordless cycles consist of six 1 X 1 squares (covering 4 vertices), four 2 X 2 squares and one 2 X 3 rectangle.
The a(4) = 24 solutions for the 4 X 4 grid include:
    O O O O     . O O O    O O O O
    O . . O     O O . O    O . . O
    O . O O     O . O O    O . . O
    O O O .     O O O .    O O O O
		

Crossrefs

Row 4 of A360196.

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 5, -2, -1, 1}, {0, 3, 9, 24, 58, 125}, 50] (* Paolo Xausa, Jun 24 2024 *)
  • PARI
    seq(n) = Vec(x*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)) + O(x^n), -n)

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-5) + a(n-6) for n > 6.
G.f.: x^2*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)).