A360197 Number of induced cycles in the 4 X n grid graph.
0, 3, 9, 24, 58, 125, 251, 490, 948, 1823, 3485, 6636, 12614, 23961, 45495, 86350, 163856, 310899, 589873, 1119144, 2123266, 4028261, 7642379, 14499018, 27507300, 52186343, 99006909, 187833924, 356354718, 676068905, 1282624071, 2433368030, 4616535768
Offset: 1
Examples
The a(3) = 9 chordless cycles consist of six 1 X 1 squares (covering 4 vertices), four 2 X 2 squares and one 2 X 3 rectangle. The a(4) = 24 solutions for the 4 X 4 grid include: O O O O . O O O O O O O O . . O O O . O O . . O O . O O O . O O O . . O O O O . O O O . O O O O
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-2,-1,1).
Crossrefs
Row 4 of A360196.
Programs
-
Mathematica
LinearRecurrence[{4, -6, 5, -2, -1, 1}, {0, 3, 9, 24, 58, 125}, 50] (* Paolo Xausa, Jun 24 2024 *)
-
PARI
seq(n) = Vec(x*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)) + O(x^n), -n)
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-5) + a(n-6) for n > 6.
G.f.: x^2*(3 - 3*x + 6*x^2 + x^3 - 2*x^4)/((1 - x)^2*(1 - 2*x + x^2 - x^3 - x^4)).