cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360212 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-5*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 19, 67, 242, 890, 3310, 12423, 46959, 178526, 681893, 2614698, 10059000, 38807021, 150080294, 581649776, 2258469988, 8783966719, 34214789901, 133450049457, 521134066663, 2037313708685, 7972641631438, 31228124666374, 122421230120657
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A360212 := proc(n)
        add((-1)^k*binomial(2*n-5*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360212(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-5*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^3/(1+sqrt(1-4*x)))))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(3*n-4)*a(n-2) +2*(-6*n+11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(n-4)*a(n-7) +2*(-2*n+9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023