cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360222 a(n) is the number of permutable pieces in a standard n X n X n Rubik's cube.

Original entry on oeis.org

0, 8, 20, 56, 92, 152, 212, 296, 380, 488, 596, 728, 860, 1016, 1172, 1352, 1532, 1736, 1940, 2168, 2396, 2648, 2900, 3176, 3452, 3752, 4052, 4376, 4700, 5048, 5396, 5768, 6140, 6536, 6932, 7352, 7772, 8216, 8660, 9128, 9596, 10088, 10580, 11096, 11612, 12152
Offset: 1

Views

Author

William Riley Barker, Jan 30 2023

Keywords

Examples

			The 2 X 2 X 2 Rubik's cube consists of 8 corner pieces, so a(2) = 8; the 3 X 3 X 3 cube has 8 corner pieces, 12 edge pieces, and 6 non-permutable center pieces, so a(3) = 8 + 12 = 20.
		

Crossrefs

Programs

  • Mathematica
    A360222[n_] := If[n == 1, 0, 6*((n-2)*n - Mod[n, 2]) + 8]; Array[A360222, 50] (* or *)
    LinearRecurrence[{2, 0, -2, 1}, {0, 8, 20, 56, 92}, 50] (* Paolo Xausa, Oct 04 2024 *)
  • Python
    N = 20
    seq = [0]
    for n in range(2, N+1):
       seq.append( 8 + 12*(n-2) + 6*((n-2)**2 - (n%2)) )

Formula

a(n) = 8 + 12*(n-2) + 6*((n-2)^2 - (n mod 2)) for n > 1, a(1) = 0.
G.f.: 4*x^2*(x^3-4*x^2-x-2)/((x+1)*(x-1)^3).
a(n) = A005897(n-1) - A010677(n) for n>=2.
E.g.f.: 2*(2*(x - 2) + (3*x^2 - 3*x + 4)*cosh(x) + (3*x^2 - 3*x + 1)*sinh(x)). - Stefano Spezia, Feb 02 2023