cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360232 G.f. Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (1 + n*x + x^2)^n * x^n.

Original entry on oeis.org

1, 1, 2, 6, 16, 51, 172, 626, 2409, 9791, 41671, 185224, 855865, 4100761, 20314349, 103827684, 546388333, 2955518901, 16407286272, 93350267922, 543674327227, 3237568471183, 19693508812475, 122249256779882, 773797772369256, 4990290667614087, 32766888950422831
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 51*x^5 + 172*x^6 + 626*x^7 + 2409*x^8 + 9791*x^9 + 41671*x^10 + 185224*x^11 + 855865*x^12 + ...
where
A(x) = 1 + (1 + x + x^2)*x + (1 + 2*x + x^2)^2*x^2 + (1 + 3*x + x^2)^3*x^3 + (1 + 4*x + x^2)^4*x^4 + ... + (1 + n*x + x^2)^n*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x + x^2)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 13 2023 *)
    Flatten[{1, Table[Sum[Sum[Binomial[k,j] * Binomial[j,n-k-j] * k^(2*j - n + k), {j, 0, k}], {k, 1, n}], {n, 1, 30}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
  • PARI
    {a(n) = polcoeff( sum(m=0,n, (1 + m*x + x^2)^m * x^m +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=1..n}(Sum_{j=0..k} binomial(k,j) * binomial(j,n-k-j) * k^(2*j-n+k)). - Vaclav Kotesovec, Feb 14 2023