A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 12: {1,1,2} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 28: {1,1,4} 40: {1,1,1,3} 44: {1,1,5} 45: {2,2,3} 48: {1,1,1,1,2} 50: {1,3,3} 52: {1,1,6} 54: {1,2,2,2} 56: {1,1,1,4} 60: {1,1,2,3} 63: {2,2,4} 68: {1,1,7} 72: {1,1,1,2,2} The prime indices of 126 are {1,2,2,4} with mean 9/4 and distinct prime indices {1,2,4} with mean 7/3, so 126 is in the sequence.
Crossrefs
These partitions are counted by A360242.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Mean[prix[#]]!=Mean[Union[prix[#]]]&]
Comments