cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360278 Determinant of the matrix [L(j+k) + d(j,k)]_{1<=j, k<=n}, where L(n) denotes the Lucas number A000032(n), and d(j,k) is 1 or 0 according as j = k or not.

Original entry on oeis.org

4, 16, 44, 121, 319, 841, 2204, 5776, 15124, 39601, 103679, 271441, 710644, 1860496, 4870844, 12752041, 33385279, 87403801, 228826124, 599074576, 1568397604, 4106118241, 10749957119, 28143753121, 73681302244, 192900153616, 505019158604, 1322157322201, 3461452807999, 9062201101801, 23725150497404, 62113250390416, 162614600673844, 425730551631121, 1114577054219519
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 01 2023

Keywords

Comments

Conjecture 1: Let v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then A^2*det[v(j+k) + d(j,k)]_{1<=j, k<=n} = v(n+1)^2 - (A^2 + 4)*(n mod 2) for any positive integer n. In particular, a(n) = L(n+1)^2 - 5*(n mod 2) for all n > 0.
Conjecture 2: Let v(0) = 2, v(1) = A, and v(n+1) = A*v(n) - v(n-1) for n > 0. Then det[v(j+k) + d(j,k)]_{1<=j, k<=n} = u(n+1)^2 - n^2 for any positive integer n, where u(0) = 0, u(1) = 1, and u(n+1) = A*u(n) - u(n-1) for all n > 0.
Conjecture 3: Let F(n) denote the Fibonacci number A000045(n). Then, for any positive integer n, we have det[F(j+k) + d(j,k)]_{1<=j, k<=n} = F(n+1)^2 + (n mod 2).

Examples

			a(2) = 16 since the determinant of the 2 X 2 matrix [L(1+1)+1, L(1+2); L(2+1), L(2+2)+1] = [4, 4; 4, 8] is 16.
		

Crossrefs

Programs

  • Magma
    A360278:= func< n | Lucas(n+1)^2 - 5*(n mod 2) >;
    [A360278(n): n in [1..40]]; // G. C. Greubel, Jun 10 2025
    
  • Mathematica
    (* First program *)
    a[n_]:=a[n]=Det[Table[LucasL[j+k]+Boole[j==k],{j,1,n},{k,1,n}]];
    Table[a[n],{n,1,25}]
    (* Second program *)
    LinearRecurrence[{3, 0, -3, 1}, {4, 16, 44, 121}, 41] (* G. C. Greubel, Jun 10 2025 *)
  • SageMath
    def A360278(n): return lucas_number2(n+1,1,-1)^2 - 5*(n%2)
    print([A360278(n) for n in range(1,41)]) # G. C. Greubel, Jun 10 2025

Formula

From G. C. Greubel, Jun 10 2025: (Start)
a(n) = A000032(2*n+2) - 2 - (n mod 2) = A000032(n+1)^2 - 5*(n mod 2).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
a(n) = 1 + Sum_{k=0..n-1} A027960(n, k)*A027960(n, k+1).
G.f.: (1 + x + 4*x^2 - x^3)/((1-x^2)*(1-3*x+x^2)) - 1.
E.g.f.: exp(3*x/2)*( 3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2) ) - 2*cosh(x) - 3*sinh(x) - 1. (End)