cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360282 Triangle read by rows. T(n, k) = (1/2) * binomial(2*(n - k + 1), n - k + 1) * binomial(2*n - k, k - 1) for n > 0, T(0, 0) = 1.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 10, 12, 3, 0, 35, 60, 30, 4, 0, 126, 280, 210, 60, 5, 0, 462, 1260, 1260, 560, 105, 6, 0, 1716, 5544, 6930, 4200, 1260, 168, 7, 0, 6435, 24024, 36036, 27720, 11550, 2520, 252, 8
Offset: 0

Views

Author

Peter Luschny, Feb 11 2023

Keywords

Comments

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,     1;
[2] 0,     3,      2;
[3] 0,    10,     12,      3;
[4] 0,    35,     60,     30,      4;
[5] 0,   126,    280,    210,     60,     5;
[6] 0,   462,   1260,   1260,    560,   105,     6;
[7] 0,  1716,   5544,   6930,   4200,  1260,   168,    7;
[8] 0,  6435,  24024,  36036,  27720, 11550,  2520,  252,   8;
[9] 0, 24310, 102960, 180180, 168168, 90090, 27720, 4620, 360, 9;
		

Crossrefs

Cf. A135503, A088218 (and A001700), A182626 (row sums apart from sign).
Family: A172431 and unsigned A053123 (case 1), this sequence is case 2, A360546 (case 3).

Programs

  • Maple
    T := proc(n, k) if n = 0 then 1 else m := n - k + 1; (1/2) * binomial(2*m, m) * binomial(m + n - 1, k - 1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..8);
    # With Vladimir Kruchinin's g.f.:
    gf := 1 + (y - x*y^2)/(2*sqrt((x*y - 1)^2 - 4*x)) ;
    serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
    seq(print(seq(coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 14 2023

Formula

The sequence is member of a family of sequences defined by T(0, 0, m) = 1 and for m > 0, n > 0 as T(n, k, m) = (1/m)*binomial(m*u, u)*binomial(u + n - 1, k - 1), where u = n - k + 1. Here the case m = 2 is considered.
G.f.: (y*(1 - x*y)) / (2*sqrt(x*(y*(x*y - 2) - 4) + 1)) - y/2 + 1. - Vladimir Kruchinin, Feb 14 2023