A360311
The sum of the primes prime(n) + prime(n+1) + ... + prime(n+k) in A360297.
Original entry on oeis.org
5, 26, 124, 318, 1703, 1133, 2086, 7641, 10912775, 60927, 8764, 184252585101, 144329, 474, 1090
Offset: 1
-
from sympy import prime, nextprime
def A360311(n):
p = prime(n)
q = nextprime(p)
s, k = p+q, 1
while s%(q:=nextprime(q)):
k += 1
s += q
return s # Chai Wah Wu, Feb 06 2023
A360312
The dividing prime prime(n+k+1) in A360297.
Original entry on oeis.org
5, 13, 31, 53, 131, 103, 149, 283, 14081, 883, 313, 2281229, 1429, 79, 109
Offset: 1
-
from sympy import prime, nextprime
def A360312(n):
p = prime(n)
q = nextprime(p)
s, k = p+q, 1
while s%(q:=nextprime(q)):
k += 1
s += q
return q # Chai Wah Wu, Feb 06 2023
A360376
a(n) = minimal nonnegative k such that prime(n) * prime(n+1) * ... * prime(n+k) + 1 is divisible by prime(n+k+1), or -1 if no such k exists.
Original entry on oeis.org
0, 99, 14, 1, 2, 73, 33, 10, 137, 277856, 1
Offset: 1
a(1) = 0 as prime(1) + 1 = 2 + 1 = 3, which is divisible by prime(2) = 3.
a(3) = 14 as prime(3) * ... * prime(17) + 1 = 320460058359035439846, which is divisible by prime(18) = 61.
a(10) = 277856 as prime(10) * ... * prime(277866) + 1 = 645399...451368 (a number with 1701172 digits), which is divisible by prime(277867) = 3919259.
a(11) = 1 as prime(11) * prime(12) + 1 = 31 * 37 + 1 = 1148, which is divisible by prime(13) = 41.
-
from sympy import prime, nextprime
def A360376(n):
p = prime(n)
s, k = p, 0
while (s+1)%(p:=nextprime(p)):
k += 1
s *= p
return k # Chai Wah Wu, Feb 07 2023
A360406
a(n) = minimal positive k such that prime(n) * prime(n+1) * ... * prime(n+k) - 1 is divisible by prime(n+k+1), or -1 if no such k exists.
Original entry on oeis.org
1, 1, 9, 14, 31, 826, 1, 34
Offset: 1
a(1) = 1 as prime(1) * prime(2) - 1 = 2 * 3 - 1 = 5, which is divisible by prime(3) = 5.
a(2) = 1 as prime(2) * prime(3) - 1 = 3 * 5 - 1 = 14, which is divisible by prime(4) = 7.
a(3) = 9 as prime(3) * ... * prime(12) - 1 = 1236789689134, which is divisible by prime(13) = 41.
-
f:= proc(n) local P,k,p;
P:= ithprime(n); p:= nextprime(P);
for k from 0 to 10^6 do
if P-1 mod p = 0 then return k fi;
p:= nextprime(p);
od;
FAIL
end proc:
map(f, [$1..8]); # Robert Israel, Feb 22 2023
-
from sympy import prime, nextprime
def A360406(n):
p = prime(n)
q = nextprime(p)
s, k = p*q, 1
while (s-1)%(q:=nextprime(q)):
k += 1
s *= q
return k # Chai Wah Wu, Feb 06 2023
Showing 1-4 of 4 results.
Comments