A360308 Number T(n,k) of permutations of [n] whose descent set is the k-th finite subset of positive integers in Gray order; triangle T(n,k), n>=0, 0<=k<=ceiling(2^(n-1))-1, read by rows.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 5, 3, 1, 5, 3, 1, 4, 6, 9, 11, 4, 16, 9, 6, 9, 1, 4, 16, 9, 11, 4, 1, 5, 10, 14, 26, 10, 35, 19, 26, 40, 5, 19, 61, 35, 40, 14, 10, 26, 19, 35, 5, 1, 14, 10, 35, 61, 14, 40, 40, 26, 19, 5, 1, 6, 15, 20, 50, 20, 64, 34, 71, 111
Offset: 0
Examples
T(5,5) = 4: there are 4 permutations of [5] with descent set {1,2,3} (the 5th subset in Gray order): 43215, 53214, 54213, 54312. Triangle T(n,k) begins: 1; 1; 1, 1; 1, 2, 1, 2; 1, 3, 3, 5, 3, 1, 5, 3; 1, 4, 6, 9, 11, 4, 16, 9, 6, 9, 1, 4, 16, 9, 11, 4; ...
Links
- Alois P. Heinz, Rows n = 0..15, flattened
- Wikipedia, Gray code
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
a:= proc(n) a(n):= `if`(n<2, n, Bits[Xor](n, a(iquo(n, 2)))) end: b:= proc(u, o, t) option remember; `if`(u+o=0, x^a(t), add(b(u-j, o+j-1, t), j=1..u)+ add(b(u+j-1, o-j, t+2^(o+u-1)), j=1..o)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..7);
-
Mathematica
a[n_] := a[n] = If[n<2, n, BitXor[n, a[Quotient[n, 2] ]]]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, x^a[t], Sum[b[u - j, o + j - 1, t], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 2^(o + u - 1)], {j, 1, o}]]; T[n_] := CoefficientList[b[n, 0, 0], x]; Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Feb 14 2023, after Alois P. Heinz *)
Comments