cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360332 Numbers k such that A360331(k) > 2*k.

Original entry on oeis.org

56, 104, 112, 196, 208, 224, 304, 364, 368, 392, 416, 448, 464, 532, 608, 644, 728, 736, 784, 812, 832, 896, 928, 1036, 1064, 1184, 1204, 1216, 1288, 1316, 1352, 1372, 1376, 1456, 1472, 1484, 1504, 1568, 1624, 1664, 1696, 1708, 1792, 1856, 1952, 1976, 1988, 2044
Offset: 1

Views

Author

Amiram Eldar, Feb 03 2023

Keywords

Comments

Analogous to abundant numbers (A005101) with divisors that are restricted to numbers that have only nonprime-indexed prime factors.
The least odd term is 7^4 * (13*19)^3 * (29*...*71)^2 * (73*...*281) = 2.411... * 10^105 (where the dots are for consecutive terms in A007821).
Includes all the abundant (A005101) terms of A320628.
There are terms that are not in A320628, and the least of them is 3 * m, where m is a term of A320628 with sigma(m) > 6. Such a number exists, and it should be a positive multiple of Product_{i=1..k} A007821(k) = 2 * 7 * ... * 11443 = 9.164... * 10^4148, where k = 1160 is the least number such that Product_{i=1..k} A007821(k)/(A007821(k)-1) > 6.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 1, 23, 215, 1997, 19231, 189457, 1873511, 18593697, ... . Apparently, the asymptotic density of this sequence equals 0.018... .

Crossrefs

Subsequence of A005101.

Programs

  • Maple
    q:= n-> is(mul(`if`(isprime(numtheory[pi](i[1])), 1,
       (i[1]^(i[2]+1)-1)/(i[1]-1)), i=ifactors(n)[2])>2*n):
    select(q, [$1..2050])[];  # Alois P. Heinz, Feb 03 2023
  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2000], s[#] > 2*# &]
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, (p[i]^(e[i]+1)-1)/(p[i]-1))) > 2*n;}