A360365 a(n) = sum of the products of the digits of the first n positive multiples of 3.
3, 9, 18, 20, 25, 33, 35, 43, 57, 57, 66, 84, 111, 119, 139, 171, 176, 196, 231, 231, 249, 285, 339, 353, 388, 444, 452, 484, 540, 540, 567, 621, 702, 702, 702, 702, 703, 707, 714, 714, 720, 732, 750, 756, 771, 795, 799, 815, 843, 843, 858, 888, 933, 945, 975, 1023, 1030, 1058, 1107
Offset: 1
Examples
a(4) = 20 since the first 4 positive multiples of 3 are 3,6,9 and 12 and the sum of the product of their digits is 3 + 6 + 9 + 1*2 = 20.
Programs
-
Mathematica
Accumulate[Times @@@ IntegerDigits[Range[3, 999 , 3]]]
-
PARI
a(n)={sum(k=1, n, vecprod(digits(3*k)))} \\ Andrew Howroyd, Feb 09 2023
-
Python
from math import prod def A360365(n): return sum(prod(int(d) for d in str(m)) for m in range(3,3*n+1,3)) # Chai Wah Wu, Feb 28 2023
Formula
a((10^n-1)/3) = (1/836)*(15*(19*45^n-63) + 44*3^((3*n)/2)*(sqrt(3)*sin((Pi*n)/6) + 15*cos((Pi*n)/6))).
G.f. of the subsequence a((10^n-1)/3): 9*(2 - 32*x + 135*x^2)/((1 - x)*(1 - 45*x)*(1 - 9*x + 27*x^2)).
a((10^n-1)/3) = 55*a((10^(n-1)-1)/3) - 486*a((10^(n-2)-1)/3) + 1647*a((10^(n-3)-1)/3) - 1215*a((10^(n-4)-1)/3) for n > 4.