A360383 prime(k) such that (k BitOR prime(k)) is prime, where BitOR is the binary bitwise OR.
2, 3, 5, 7, 17, 23, 29, 31, 43, 47, 53, 59, 67, 89, 101, 103, 107, 113, 127, 131, 163, 167, 173, 181, 191, 199, 233, 257, 269, 281, 317, 331, 353, 359, 367, 373, 379, 383, 389, 397, 401, 419, 421, 439, 463, 479, 503, 509, 521, 523, 563, 577, 587, 631, 641, 719
Offset: 1
Examples
2 is a term since k = primepi(2) = 1 and (1 BitOR 2) = 3 is a prime number. 101 is a term since k = primepi(101) = 26 and (26 BitOR 101) = 127 is a prime number.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= p-> andmap(isprime, [p, Bits[Or](p, numtheory[pi](p))]): select(q, [$2..1000])[]; # Alois P. Heinz, Feb 05 2023
-
Mathematica
Select[Prime[Range[130]], PrimeQ[BitOr[#, PrimePi[#]]] &] (* Amiram Eldar, Feb 05 2023 *)
-
PARI
{ p = primes([1,719]); for (k=1, #p, if (isprime(bitor(k,p[k])), print1 (p[k]", "))) } \\ Rémy Sigrist, Feb 05 2023
-
Python
from sympy import isprime, primerange print([p for i, p in enumerate(primerange(2, 800), 1) if isprime(i|p)]) # Michael S. Branicky, Feb 05 2023
Comments