A360419 a(n) = the number of U-frame polyominoes with n cells, reduced for symmetry.
0, 0, 0, 0, 1, 2, 5, 9, 16, 24, 37, 50, 71, 93, 121, 151, 192, 231, 285, 338, 398, 470, 548, 626, 723, 827, 924, 1056, 1175, 1314, 1454, 1629, 1763, 1985, 2138, 2356, 2540, 2820, 2976, 3305, 3491, 3834, 4039, 4441, 4613, 5103, 5291, 5775, 5999, 6572
Offset: 1
Keywords
Examples
a(5)=1 because of: OO O OO The a(7) = 5 polyominoes are: O O O O O O O O O O OO O O O O OOO OOO OOOO OOOO OOOOO
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
PARI
B(n,k,x) = sum(j=k, n, x^j/(1 - x^j), O(x*x^n)) seq(n) = Vec(sum(k=1, (n-2)\3, x^k*(B(n-k, k+1, x)^2 + B((n-k)\2, k+1, x^2))/(1-x^k), O(x*x^n))/2, -n) \\ Andrew Howroyd, Feb 07 2023
Formula
G.f.: Sum_{k>=1} (x^k/(1 - x^k)) * (B(k+1, x)^2 + B(k+1, x^2))/2 where B(k, x) = Sum_{j>=k} x^j/(1 - x^j). - Andrew Howroyd, Feb 07 2023
Comments