cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008970 Triangle T(n,k) = P(n,k)/2, n >= 2, 1 <= k < n, of one-half of number of permutations of 1..n such that the differences have k runs with the same signs.

Original entry on oeis.org

1, 1, 2, 1, 6, 5, 1, 14, 29, 16, 1, 30, 118, 150, 61, 1, 62, 418, 926, 841, 272, 1, 126, 1383, 4788, 7311, 5166, 1385, 1, 254, 4407, 22548, 51663, 59982, 34649, 7936, 1, 510, 13736, 100530, 325446, 553410, 517496, 252750, 50521, 1, 1022, 42236, 433162, 1910706, 4474002, 6031076, 4717222, 1995181, 353792
Offset: 2

Views

Author

Keywords

Examples

			Triangle starts
  1;
  1,  2;
  1,  6,   5;
  1, 14,  29,  16;
  1, 30, 118, 150, 61;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261, #13, P_{n,k}.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260, Table 7.2.1.

Crossrefs

A059427 gives triangle of P(n, k).
A008303 gives circular version of P(n, k).
T(2n,n) gives A360426.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n<2, 0, `if`(k=1, 1,
          k*T(n-1, k) + 2*T(n-1, k-1) + (n-k)*T(n-1, k-2)))
        end:
    seq(seq(T(n,k), k=1..n-1), n=2..12);  # Alois P. Heinz, Feb 08 2023
  • Mathematica
    p[n_ /; n >= 2, 1] = 2; p[n_ /; n >= 2, k_] /; 1 <= k <= n := p[n, k] = k*p[n-1, k] + 2*p[n-1, k-1] + (n-k)*p[n-1, k-2]; p[n_, k_] = 0; t[n_, k_] := p[n, k]/2; A008970 = Flatten[ Table[ t[n, k], {n, 2, 11}, {k, 1, n-1}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)

Formula

Let P(n, k) = number of permutations of [1..n] with k "sequences". Note that A008970 gives P(n, k)/2. Then g.f.: Sum_{n, k} P(n, k) *u^k * t^n/n! = (1 + u)^(-1) * ((1 - u) * (1 - sin(v + t * cos(v))-1) where u = sin(v).
P(n, 1) = 2, P(n, k) = k*P(n-1, k) + 2*P(n-1, k-1) + (n-k)*P(n-1, k-2).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001

A059427 Triangle read by rows: T(n,k) is the number of permutations of [n] with k alternating runs (n>=2, k>=1).

Original entry on oeis.org

2, 2, 4, 2, 12, 10, 2, 28, 58, 32, 2, 60, 236, 300, 122, 2, 124, 836, 1852, 1682, 544, 2, 252, 2766, 9576, 14622, 10332, 2770, 2, 508, 8814, 45096, 103326, 119964, 69298, 15872, 2, 1020, 27472, 201060, 650892, 1106820, 1034992, 505500, 101042, 2, 2044
Offset: 2

Views

Author

N. J. A. Sloane, Jan 31 2001

Keywords

Comments

The permutation 732569148 has 4 alternating runs: 732, 2569, 91 and 148.

Examples

			T(3,2) = 4 because each of the permutations 132, 312, 213, 231 has two alternating runs: (13, 32), (31, 12), (21, 13), (23, 31); each of 123 and 321 has 1 alternating run.
Triangle (with rows n >= 2 and columns k >= 1) begins as follows:
  2;
  2,   4;
  2,  12,  10;
  2,  28,  58,   32;
  2,  60, 236,  300,  122;
  2, 124, 836, 1852, 1682, 544;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, Holland, 1974, p. 261, #13.
  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, pp. 157-162.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262, Table 7.2.1 doubled.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1973, Vol. 3, pp. 46 and 587-8.

Crossrefs

Diagonals give A001250, A001758. Column k = 2 is A028399.
Cf. A008303 (circular version of this array), A008970.
T(2n,n) gives 2*A360426.

Programs

  • Maple
    P := proc(n,k) if n<2 or k<1 or k>=n then 0 elif n=2 and k=1 then 2 else k*P(n-1,k)+2*P(n-1,k-1)+(n-k)*P(n-1,k-2) fi end: p:=(n,k)->P(n+1,k): matrix(9,9,p);
  • Mathematica
    t[n_, k_] := t[n, k] = k*t[n-1, k] + 2*t[n-1, k-1] + (n-k)*t[n-1, k-2];
    t[2, 1] = 2; t[n_, k_] /; n < 2 || k < 1 || k >= n = 0;
    Flatten[Table[t[n, k], {n,2,11}, {k, 1, n-1}]][[1 ;; 47]]
    (* Jean-François Alcover, Jun 16 2011, after recurrence *)

Formula

P(n, k) = 0 if n < 2 or k < 1 or k >= n; P(2, 1) = 2; P(n, k) = k*P(n-1, k) + 2*P(n-1, k-1) + (n-k)*P(n-1, k-2) [André]. - Emeric Deutsch, Feb 21 2004
The row generating polynomials P[n] satisfy P[n] = t*[(1 - t^2) * dP[n-1]/dt + (2 + (n-2) * t) * P[n-1]] and P[2] = 2*t.
T(n, n-1) = 2*A000111(n) = A001250(n-1).
T(n, k) = k*T(n-1, k) + 2*T(n-1, k-1) + (n-k)*T(n-1, k-2), where we set T(2, 1) = 2 and T(n, k) = 0 if n < 2 or k < 1 or k >= n.
E.g.f.: Sum_{n, k >= 0} T(n, k) * x^n * t^k/n! = 2*(1 - t^2 + t * sqrt(1-t^2) * sinh(x * sqrt(1 - t^2)))/((1 + t)^2*(1-t*cosh(x * sqrt(1 - t^2)))) - 2(1 + t*x)/(1 + t).
T(n, k) = 2*A008970(n, k).

Extensions

Edited by Emeric Deutsch and Ira M. Gessel, Dec 06 2004
André reference from Philippe Deléham, Jul 26 2006
Showing 1-2 of 2 results.