A360441 Triangle read by rows: T(n,k) is the number of pairs (c,m), where c is a covering of the 1 X (2n) grid with 1 X 2 rectangles and equal numbers of red and blue 1 X 1 squares and m is a matching between red squares and blue squares, such that exactly k matched pairs are adjacent.
1, 1, 2, 7, 8, 4, 71, 78, 36, 8, 1001, 1072, 504, 128, 16, 18089, 19090, 9080, 2480, 400, 32, 398959, 417048, 199980, 56960, 10320, 1152, 64, 10391023, 10789982, 5204556, 1523480, 295120, 38304, 3136, 128, 312129649, 322520672, 156264304, 46629632, 9436000, 1336832, 130816, 8192, 256
Offset: 0
Examples
Triangle begins: 1 1 2 7 8 4 71 78 36 8 1001 1072 504 128 16 18089 19090 9080 2480 400 32 398959 417048 199980 56960 10320 1152 64 10391023 10789982 5204556 1523480 295120 38304 3136 128
Crossrefs
Programs
-
SageMath
def T(n,k): return(2^k*sum((-1)^(j-k)*binomial(2*n-j,n)*binomial(n,j)\ *binomial(j,k)*factorial(n-j) for j in range(k,n+1)))
Formula
T(n,k) equals 2^k times the corresponding element of the triangle of A168422.
T(n,k) = 2^k * Sum_{j=k..n} (-1)^(j-k) * C(2*n-j,n) * C(n,j) * C(j,k) * (n-j)!.
Recurrence: T(n,k) = (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * Sum_{t=0..min(j,k-j)} (-1)^(j-t) * C(j,t) * (k-j)! / (k-j-t)!
= (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * R(k,j) where R(k,j) is an element of the triangle of A253667.
Comments