A360464 a(n) = a(n-1) + a(n-2) - a(n-3) + gcd(a(n-1), a(n-3)), with a(1) = a(2) = a(3) = 1.
1, 1, 1, 2, 3, 5, 7, 10, 17, 21, 29, 34, 43, 49, 59, 66, 77, 85, 97, 106, 119, 129, 143, 154, 169, 193, 209, 234, 251, 277, 295, 322, 341, 369, 389, 418, 439, 469, 491, 522, 545, 577, 601, 634, 659, 693, 719, 754, 781, 817, 845, 882, 911, 949, 979, 1018, 1049
Offset: 1
Examples
a(5) = 2 + 1 - 1 + gcd(2, 1) = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= Vector(200): A[1]:= 1: A[2]:= 1: A[3]:= 1: for n from 4 to 200 do A[n]:= A[n-1] + A[n-2] - A[n-3] + igcd(A[n-1],A[n-3]) od: convert(A,list); # Robert Israel, Feb 15 2023
-
Mathematica
a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[n-1] + a[n-2] - a[n-3] + GCD[a[n-1], a[n-3]]; Array[a, 100] (* Amiram Eldar, Feb 08 2023 *)
-
Python
from math import gcd a = [0, 1, 1, 1] [a.append(a[n-1]+a[n-2]-a[n-3]+gcd(a[n-1], a[n-3])) for n in range(4, 58)] print(a[1:]) # Michael S. Branicky, Feb 09 2023
Formula
a(n) = a(n-1) + a(n-2) - a(n-3) + gcd(a(n-1), a(n-3)).
Comments