cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360475 Smallest prime factor of (2^prime(n) + 1) / 3.

Original entry on oeis.org

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 59, 715827883, 1777, 83, 2932031007403, 283, 107, 2833, 768614336404564651, 7327657, 56409643, 1753, 201487636602438195784363, 499, 179, 971, 845100400152152934331135470251, 415141630193, 643, 104124649, 227
Offset: 2

Views

Author

Alain Rocchelli, Feb 08 2023

Keywords

Comments

If (2^prime(n) + 1) / 3 is prime then a(n) is a Wagstaff prime (cf. A000979).
For n > 2, a(n) is congruent to 1 (mod 2*prime(n)).

Examples

			a(2)=3 since for prime(2)=3, (2^3+1)/3 = 3;
a(3)=11 since for prime(3)=5, (2^5+1)/3 = 11;
a(10)=59 since for prime(10)=29, (2^29+1)/3 = 59*3033169.
		

Crossrefs

Programs

  • Maple
    a:= n-> min(numtheory[factorset]((2^ithprime(n)+1)/3)):
    seq(a(n), n=2..30);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    a[n_] := FactorInteger[(2^Prime[n]+1)/3][[1, 1]];
    Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jan 27 2025 *)
  • PARI
    forprime(p=3, 100, An=(2^p+1)/3; if(isprime(An), print1(An,", "), forprime(div=3, 2^((p-1)/2), if(An%div==0, print1(div,", "); next(2)))))

Formula

a(n) = A020639(A126614(n)).

Extensions

a(26)-a(30) from Amiram Eldar, Feb 08 2023