cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360489 Convolution of A000219 and A001477.

Original entry on oeis.org

0, 1, 3, 8, 19, 43, 91, 187, 369, 711, 1335, 2459, 4442, 7904, 13851, 23965, 40958, 69248, 115872, 192097, 315652, 514485, 832112, 1336214, 2131099, 3377178, 5319290, 8330147, 12973662, 20100411, 30986772, 47542096, 72609729, 110410791, 167186826, 252138816, 378781852
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 09 2023

Keywords

Comments

In general, for 0 < p < 1, delta > 1, beta > -1, the convolution of (delta^(n^p) * n^alfa) and n^beta is asymptotic to delta^(n^p) * n^(alfa + (1-p)*(beta+1)) * Gamma(beta+1) / (p^(beta+1) * log(delta)^(beta+1)).
For p = 1 is the convolution of (delta^(n^p) * n^alfa) and n^beta asymptotic to delta^n * n^alfa * polylog(-beta, 1/delta).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> add(b(n-j)*j, j=0..n):
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    nmax = 50; CoefficientList[Series[x/(1-x)^2 * Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} A000219(k) * (n-k).
G.f.: x/(1-x)^2 * Product_{k>=1} 1/(1 - x^k)^k.
a(n) ~ exp(1/12 + 3*zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * sqrt(3*Pi) * 2^(35/36) * zeta(3)^(17/36) * n^(1/36)), where A is the Glaisher-Kinkelin constant A074962.