A360518 Numbers j such that there exists a number i <= j with the property that i+j and i*j have the same decimal digits in reverse order.
2, 9, 24, 47, 497, 4997, 49997, 499997, 4999997, 49999997, 499999997, 4999999997, 49999999997, 499999999997, 4999999999997, 49999999999997, 499999999999997, 4999999999999997, 49999999999999997, 499999999999999997, 4999999999999999997, 49999999999999999997
Offset: 1
Examples
2+497 = 499 and 2*497 = 994.
References
- Xander Faber and Jon Grantham, "On Integers Whose Sum is the Reverse of their Product", Fib. Q., 61:1 (2023), 28-41.
Links
- Xander Faber and Jon Grantham, On Integers Whose Sum is the Reverse of their Product, arXiv:2108.13441 [math.NT], 2021.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Cf. A276509.
Formula
G.f.: x*(220*x^4-127*x^3-55*x^2-13*x+2)/((10*x-1)*(x-1)).
From Stefano Spezia, Mar 21 2023: (Start)
a(n) = (10^n - 600)/200 for n > 3.
E.g.f.: (1797 - 1800*exp(x) + 3*exp(10*x) + 2970*x + 3450*x^2 + 2200*x^3)/600. (End)
Comments