cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360520 a(n) = A120963(n) + A341711(floor(n/2)).

Original entry on oeis.org

2, 3, 11, 15, 43, 57, 137, 177, 389, 495, 1003, 1257, 2421, 3003, 5515, 6771, 12011, 14631, 25143, 30399, 50931, 61197, 100161, 119643, 192051, 228255, 359839, 425631, 660623, 778119, 1190359, 1396479, 2109119, 2465439, 3679263, 4286175, 6327871, 7348719
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2023

Keywords

Examples

			n=4: a(4) = A120963(4) + A341711(2) = 24 + 19 = 43.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; nops(invphi(n)) end:
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> g(n)+g(2*iquo(n, 2)+1)/2:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 02 2023
  • Mathematica
    b[n_] := b[n] = Length[invphi[n]];
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[d*b[d], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := g[n] + g[2*Quotient[n, 2] + 1]/2;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 16 2023, after Alois P. Heinz and using Maxim Rytin's invphi program (see A007617) *)