A360540 a(n) is the cubefull part of n: the largest divisor of n that is a cubefull number (A036966).
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e > 2, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 2, f[i, 1]^f[i, 2], 1));}
Formula
a(n) = 1 if and only if n is a cubefree number (A004709).
a(n) = n if and only if n is a cubefull number (A036966).
a(n) = n/A360539(n).
Multiplicative with a(p^e) = p^e if e >= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - p^(1-s) + p^(-s) - p^(1-3*s) - p^(1-2*s) + p^(-2*s) + p^(3-3*s)).