cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A368248 The number of unitary divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A061704 and A362852 at n = 64, and from A304327 at n = 72.
Also, the number of squarefree divisors of the cubefull part of n.
Also, the number of cubes of squarefree numbers (A062838) that divide n.
The number of unitary divisors of n that are cubefull numbers (A036966). - Amiram Eldar, Jun 19 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 2, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 2), factor(n)[, 2]));

Formula

a(n) = A034444(A360540(n)).
a(n) = abs(A307428(n)).
Multiplicative with a(p) = 1 for e <= 2, and 2 for e >= 3.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A034444(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)*zeta(3*s)/zeta(6*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289).
In general, the asymptotic mean of the number of unitary divisors of the k-full part of n is zeta(k)/zeta(2*k).

A368247 The number of cubefree divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 3), factor(n)[, 2]));

Formula

a(n) = A073184(A360540(n)).
Multiplicative with a(p^e) = 1 if e <= 2, and 3 otherwise.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A073184(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 2/p^3) = 1.37700168952903630206... .
In general, the asymptotic mean of the number of k-free divisors of the k-full part of n is Product_{p prime} (1 + (k-1)/p^k).

A384049 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is cubefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 11, 12, 13, 14, 15, 15, 17, 18, 19, 20, 21, 22, 23, 21, 25, 26, 26, 28, 29, 30, 31, 31, 33, 34, 35, 36, 37, 38, 39, 35, 41, 42, 43, 44, 45, 46, 47, 45, 49, 50, 51, 52, 53, 52, 55, 49, 57, 58, 59, 60, 61, 62, 63, 63, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A254926.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), this sequence (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[e < 3, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2] < 3, 0, 1));}

Formula

Multiplicative with a(p^e) = p^e if e <= 2, and p^e - 1 if e >= 3.
a(n) = n * A047994(n) / A384051(n).
a(n) = A047994(A360540(n)) * A360539(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^s - 1/p^(3*s) + 1/p^(4*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/(p^5*(p+1))) = 0.988504... (A065468).

A384051 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a cubefull number.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 8, 8, 4, 10, 6, 12, 6, 8, 16, 16, 8, 18, 12, 12, 10, 22, 16, 24, 12, 27, 18, 28, 8, 30, 32, 20, 16, 24, 24, 36, 18, 24, 32, 40, 12, 42, 30, 32, 22, 46, 32, 48, 24, 32, 36, 52, 27, 40, 48, 36, 28, 58, 24, 60, 30, 48, 64, 48, 20, 66, 48, 44
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A384040.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), this sequence (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[e < 3, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2] < 3, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e-1 if e <= 2, and p^e if e >= 3.
a(n) = n * A047994(n) / A384049(n).
a(n) = A047994(A360539(n)) * A360540(n).
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s) + 1/p^(2*s-1) + 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5) = 0.714093594477970831206... .

A360539 a(n) is the cubefree part of n: the largest unitary divisor of n that is a cubefree number (A004709).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2023

Keywords

Comments

Equivalently, a(n) is the least divisor d of n such that n/d is a cubefull number (A036966).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 3, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A360539(n): return prod(p**e for p,e in factorint(n).items() if e<=2) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = 1 if and only if n is a cubefull number (A036966).
a(n) = n if and only if n is a cubefree number (A004709).
a(n) >= A055231(n) with equality if and only if n is in A337050.
a(n) = n/A360540(n).
Multiplicative with a(p^e) = p^e if e <= 2, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 0.4213813264... .

A368329 The largest term of A054743 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A360540 at n = 27.
The largest divisor d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = p^e if e > p.
A034444(a(n)) = A368330(n).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= n, with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^((p+2)*s-1) - 1/p^((p+2)*(s-1)+1) - 1/p^((p+1)*s) + 1/p^((p+1)*(s-1))).

A385048 The sum of the unitary divisors of n that are cubefull numbers (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 33, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A368248(n), and the largest of them is A360540(n).

Crossrefs

The unitary analog of A385005.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), this sequence (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = p^e + 1 if e >= 3.
a(n) = A034448(n) / A371242(n).
a(n) <= A034448(n), with equality if and only if n is cubefull (A036966).
a(n) <= A385005(n), with equality if and only if n is biquadratefree (A046100).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - 1/p^(s-1) + 1/p^(3*s-3) - 1/p^(4*s-3)).

A366145 The number of divisors of the largest divisor of n that is a cubefull number (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, x+1), factor(n)[, 2]));

Formula

a(n) = A000005(A360540(n)).
a(n) = A000005(n)/A366147(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A000005(n), with equality if and only if n is cubefull (A036966).
Multiplicative with a(p^e) = 1 if e <= 2 and e+1 otherwise.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 3/p^(3*s) - 2/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 3/p^3 + 1/p^4 - 2/p^5) = 1.76434793373691907811... .

A366076 The number of prime factors of the largest divisor of n that is a cubefull number (A036966), counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

The sum of exponents larger than 2 in the prime factorization of n.
The number of distinct prime factors of the largest divisor of n that is a cubefull number is A295659(n).

Crossrefs

Similar sequence: A275812 (number of prime factors of the powerful part).

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x < 3, 0, x), factor(n)[, 2]));

Formula

a(n) = A001222(A360540(n)).
a(n) = A001222(n) - A366077(n).
Additive with a(p^e) = 0 if e <= 2, and a(p^e) = e for e >= 3.
a(n) >= 0, with equality if and only if n is cubefree (A004709).
a(n) <= A001222(n), with equality if and only if n is cubefull (A036966).
a(n) >= 3*A295659(n), with equality if and only if n is a biquadratefree number (A046100).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2/p^3 + 1/(p^2*(p-1))) = 2 * A085541 + A152441 = 0.67043452760761670220... .

A382063 Numbers whose number of coreful divisors is divisible by their number of exponential divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2025

Keywords

Comments

First differs from A377019 at n = 55: A377019(55) = 64 is not a term of this sequence.
First differs from A344742 at n = 62: A344742(62) = 72 is not a term of this sequence.
All the cubefree numbers (A004709) are terms. The least term that is not cubefree is a(215) = 256 = 2^8. The cubefree numbers are the terms whose number of coreful divisors is equal to their number of exponential divisors.
All the exponentially refactorable numbers (A382065) are terms. The least term that is not in A382065 is a(362) = 432 = 2^4 * 3^3. The next terms that are not in A382065 are 648, 2000, 2160, 3024, 3240, 4536, 4752, 5000, ... .
For a number k whose prime factorization is Product_{i} p_i^e_i, a coreful divisor d of k has the prime factorization Product_{i} p_i^f_i with f_i >= 1 for all i. An exponential divisor of k is a coreful divisor with the additional condition that f_i | e_i for all i.
Numbers k such that A049419(k) | A005361(k).
The criterion according to which a number belongs to this sequence depends only on the prime signature of this number: if {e_1, e_2, ... } are the exponents in the prime factorization of k then k is a term if and only if A005361(k)/A049419(k) = Product_{i} e_i/A000005(e_i) is an integer.
A number k is a term if and only if the cubefull part of k, A360540(k), is a term. Therefore, the primitive terms of this sequence are the cubefull terms, A382064.
The asymptotic density of this sequence is Sum_{n>=1} f(A382064(n)) = 0.83697905945047..., where f(n) = (1/(zeta(3)*n)) * Product_{prime p|n} (p^2/(p^2+p+1)).

Examples

			2 is a term since A005361(2) = A049419(2) = 2, so 2 | 2.
256 is a term since A005361(256) = 8, A049419(256) = 4, and 4 | 8.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{e = FactorInteger[k][[;;, 2]]}, Divisible[Times @@ e, Times @@ DivisorSigma[0, e]]]; Select[Range[100], # == 1 || q[#] &]
  • PARI
    isok(k) = {my(e = factor(k)[, 2]); !(vecprod(e) % vecprod(apply(x -> numdiv(x), e)));}
Showing 1-10 of 15 results. Next