cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368248 The number of unitary divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A061704 and A362852 at n = 64, and from A304327 at n = 72.
Also, the number of squarefree divisors of the cubefull part of n.
Also, the number of cubes of squarefree numbers (A062838) that divide n.
The number of unitary divisors of n that are cubefull numbers (A036966). - Amiram Eldar, Jun 19 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 2, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 2), factor(n)[, 2]));

Formula

a(n) = A034444(A360540(n)).
a(n) = abs(A307428(n)).
Multiplicative with a(p) = 1 for e <= 2, and 2 for e >= 3.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A034444(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)*zeta(3*s)/zeta(6*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289).
In general, the asymptotic mean of the number of unitary divisors of the k-full part of n is zeta(k)/zeta(2*k).

A368331 The number of divisors of the largest term of A054743 that divides of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A366145 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,2]+1));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = e+1 if e > p.
a(n) = A000005(A368329(n)).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= A000005(n), with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^((p+2)*s-1) + 1/p^((p+1)*s) + 1/p^((p+1)*s-1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/((p-1)*p^(p-1))) = 1.58396891058853238595... .

A366146 The sum of divisors of the largest divisor of n that is a cubefull number (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 40, 1, 1, 1, 1, 63, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 40, 1, 15, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 31, 121, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, if(e[i] < 3, 1, (p[i]^(e[i]+1)-1)/(p[i]-1)))};

Formula

a(n) = A000203(A360540(n)).
a(n) = A000203(n)/A366148(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A000203(n), with equality if and only if n is cubefull (A036966).
Multiplicative with a(p^e) = 1 if e <= 2 and (p^(e+1)-1)/(p-1) otherwise.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(3*s-3) + 1/p^(3*s-2) + 1/p^(3*s-1) - 1/p^(4*s-3) - 1/p^(4*s-2)).

A366147 The number of divisors of the cubefree part of n (A360539).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 1, 3, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 2, 3, 4, 1, 6, 2, 8, 2, 1, 4, 4, 4, 9, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 6, 4, 6, 2, 2, 4, 2, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, x+1, 1), factor(n)[, 2]));

Formula

a(n) = A000005(A360539(n)).
a(n) = A000005(n)/A366145(n).
Multiplicative with a(p^e) = e+1 if e <= 2, and 1 otherwise.
a(n) >= 1, with equality if and only if n is cubefull (A036966).
a(n) <= A000005(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 2/p^(3*s)).
From Vaclav Kotesovec, Oct 01 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 3/p^3 + 2/p^4) = 0.66219033176371496870504912254207846719824904470940603905284774924086...,
f'(1) = f(1) * Sum_{p prime} (9*p - 8) * log(p) / (p^4 - 3*p + 2) = f(1) * 1.04316863044761953555286128194165251303791613504188623828521117799260...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-4 of 4 results.