Original entry on oeis.org
36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1
For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
A360543(n) = | {} | = 0,
A361235(n) = | {4, 8, 16} | = 3,
A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
A360543(n) = | {30} | = 1,
A361235(n) = | {8, 16, 27, 32} | = 4,
A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
n | a + b = c | d + e = f | g + tau + phi - 1 = n
------------------------------------------------------
36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 + 9 + 12 - 1 = 36
48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 = 48
50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 + 6 + 20 - 1 = 50
54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 + 8 + 18 - 1 = 54
72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 = 72
75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 + 6 + 40 - 1 = 75
80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 = 80
96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 = 96
98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 + 6 + 42 - 1 = 98
100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 + 9 + 40 - 1 = 100
108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Diagram showing k = 1..n for n = 1..54 in blue for k counted by A360480(n), in green for k counted by A360543(n), in gold for k counted by A361235(n), and in magenta for k counted by A355432(n). Red dots indicate k | n such that k > 1, while gray dots indicate gcd(k, n) = 1.
- Michael De Vlieger, 1016 X 1016 pixel bitmap read left to right in rows, then top to bottom where the k-th pixel is black if A126706(k) is in this sequence, else white (1032256 pixels total).
Cf.
A000005,
A000010,
A001694,
A002182,
A007947,
A045763,
A053669,
A119288,
A126706,
A168263,
A243822,
A243823,
A355432,
A360480,
A360543,
A361235.
-
nn = 2^16;
a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
Reap[ Do[n = s[[j]];
If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]
A364998
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) <= k but rad(k)*A053669(k) > k.
Original entry on oeis.org
18, 24, 90, 120, 126, 150, 168, 180, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 630, 666, 696, 738, 744, 774, 840, 846, 888, 954, 984, 990, 1032, 1050, 1062, 1098, 1128, 1170, 1206, 1260, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1470, 1494
Offset: 1
Let b(n) = A126706(n), S = A360768, and T = A363082.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is not in S.
b(2) = a(1) = 18 since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, 18 does not exceed 18 and 30 is larger than 18, hence 18 is in both S and T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is in S but not T.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, thus 40 is neither in S nor T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), with n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus showing 400 terms. Terms in this sequence are colored black, those in A364999 in blue, in A364997 in green, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), with n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus showing 14400 terms, using the same color scheme as described immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms in this sequence are colored black, else white. Demonstrates a strong quasiperiodic pattern approximately mod 169.
Cf.
A007947,
A053669,
A119288,
A126706,
A355432,
A360432,
A360768,
A361098,
A363082,
A364997,
A364999.
-
Select[Select[Range[1500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r <= k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A364997
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) > k but rad(k)*A053669(k) < k.
Original entry on oeis.org
40, 45, 56, 63, 88, 99, 104, 117, 136, 152, 153, 171, 175, 176, 184, 207, 208, 232, 248, 261, 272, 275, 279, 280, 296, 297, 304, 315, 325, 328, 333, 344, 351, 368, 369, 376, 387, 423, 424, 425, 440, 459, 464, 472, 475, 477, 488, 495, 496, 513, 520, 531, 536, 539
Offset: 1
Let b(n) = A126706(n), S = A360767, and T = A360765.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is in S but not in T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, neither is less than 18, hence 18 is not in S but is in T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is not in S but is in T.
b(7) = a(1) = 40 since p*r = 5*10 = 50 and q*r = 3*10 = 30. We have both 50 > 40 and 30 < 40, thus 40 is in both S and T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus for n = 1..400. Terms in this sequence are colored black, those in A364999 in blue, in A364998 in gold, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus for n = 1..14400 using the same color scheme as immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms b(n) in this sequence are colored black, else white.
Cf.
A007947,
A053669,
A119288,
A126706,
A355432,
A360432,
A360765,
A360767,
A361098,
A364998,
A364999.
-
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r < k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
A364999
Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.
Original entry on oeis.org
12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524, 532, 548
Offset: 1
Let b(n) = A126706(n), S = A360767, and T = A363082.
b(1) = a(1) = 12 since p*r = 3*6 = 18 and q*r = 5*6 = 30, and both exceed 12. Indeed, 12 is in both S and T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18; 18 is not in S.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, and is not in T, etc.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), with n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus showing 400 terms. Terms in this sequence are colored black, those in A364998 in gold, in A364997 in green, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), with n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus showing 14400 terms. This uses the same color scheme as described immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms in this sequence are colored black, else white. Demonstrates fairly constant density of a(n) in A126706 as well as a slight quasiperiodic pattern approximately mod 169.
Cf.
A007947,
A039956,
A053669,
A081770,
A088860,
A092742,
A119288,
A126706,
A355432,
A360432,
A360767,
A361098,
A363082,
A364998,
A364999.
-
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
Showing 1-4 of 4 results.
Comments