A360548 E.g.f. satisfies A(x) = x * exp( 2*(x + A(x)) ).
0, 1, 8, 96, 1792, 46080, 1511424, 60325888, 2837970944, 153778913280, 9432255692800, 646039266656256, 48874810528235520, 4047655951598092288, 364221261622538141696, 35384754572803304325120, 3691411033400626898796544, 411569264258973944034361344
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
Maple
A360548 := proc(n) add((2*k)^(n-1)*binomial(n,k),k=1..n) ; end proc: seq(A360548(n),n=0..60) ; # R. J. Mathar, Mar 12 2023
-
PARI
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*x*exp(2*x))/2)))
-
PARI
a(n) = sum(k=1, n, (2*k)^(n-1)*binomial(n, k));
Formula
E.g.f.: A(x) = (-1/2) * LambertW(-2*x * exp(2*x)).
a(n) = Sum_{k=1..n} (2*k)^(n-1) * binomial(n,k) = 4^(n-1) * A100526(n).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * 2^(n-1) * n^(n-1) / (LambertW(exp(-1))^n * exp(n)). - Vaclav Kotesovec, Feb 17 2023