A360558 Numbers whose multiset of prime factors (or indices, see A112798) has more adjacent equalities (or parts that have appeared before) than distinct parts.
8, 16, 27, 32, 48, 64, 72, 80, 81, 96, 108, 112, 125, 128, 144, 160, 162, 176, 192, 200, 208, 216, 224, 243, 256, 272, 288, 304, 320, 324, 343, 352, 368, 384, 392, 400, 405, 416, 432, 448, 464, 480, 486, 496, 500, 512, 544, 567, 576, 592, 608, 625, 640, 648
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 8: {1,1,1} 16: {1,1,1,1} 27: {2,2,2} 32: {1,1,1,1,1} 48: {1,1,1,1,2} 64: {1,1,1,1,1,1} 72: {1,1,1,2,2} 80: {1,1,1,1,3} 81: {2,2,2,2} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 112: {1,1,1,1,4} 125: {3,3,3} For example, the prime indices of 720 are {1,1,1,1,2,2,3} with 4 adjacent equalities and 3 distinct parts, so 720 is in the sequence.
Crossrefs
Programs
-
Mathematica
Select[Range[100],PrimeOmega[#]>2*PrimeNu[#]&]
Comments