A360560 Triangle read by rows. T(n, k) = (1/2) * C(n, k) * C(3*n - 1, n) for n > 0 and T(0, 0) = 1.
1, 1, 1, 5, 10, 5, 28, 84, 84, 28, 165, 660, 990, 660, 165, 1001, 5005, 10010, 10010, 5005, 1001, 6188, 37128, 92820, 123760, 92820, 37128, 6188, 38760, 271320, 813960, 1356600, 1356600, 813960, 271320, 38760, 245157, 1961256, 6864396, 13728792, 17160990, 13728792, 6864396, 1961256, 245157
Offset: 0
Examples
Triangle begins: 1; 1, 1; 5, 10, 5; 28, 84, 84, 28; 165, 660, 990, 660, 165; 1001, 5005, 10010, 10010, 5005, 1001;
Programs
-
Maple
T := (n, k) -> ifelse(n = 0, 1, binomial(n, k)*binomial(3*n - 1, n)/2): for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
-
Maxima
T(n,m):=1/2*binomial(n+1,m)*binomial(3*n+2,n+1);
Formula
G.f.: 1/2 + x*sqrt(3 + 3*y)*cot(arcsin((3*sqrt(3*x*(y + 1)))/2)/3)/ (2*sqrt(4*x - 27*x^2*(y + 1))).