A360563 Number of ordered multisets of size n with elements from [n] whose element sum is larger than the product of all elements.
0, 0, 3, 10, 31, 71, 171, 288, 505, 985, 1471, 2036, 3455, 5136, 8009, 11376, 14261, 17613, 24073, 34429, 60706, 76196, 92324, 108538, 144947, 167151, 201501, 309115, 452026, 543635, 649137, 928947, 1059705, 1250129, 1634194, 1838908, 2084398, 2331001, 2628518
Offset: 0
Keywords
Examples
a(2) = 3: [1,1], [1,2], [2,1]. a(3) = 10: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,3,1], [2,1,1], [2,1,2], [2,2,1], [3,1,1]. a(4) = 31: [1,1,1,1], [1,1,1,2], [1,1,1,3], [1,1,1,4], [1,1,2,1], [1,1,2,2], [1,1,2,3], [1,1,3,1], [1,1,3,2], [1,1,4,1], [1,2,1,1], [1,2,1,2], [1,2,1,3], [1,2,2,1], [1,2,3,1], [1,3,1,1], [1,3,1,2], [1,3,2,1], [1,4,1,1], [2,1,1,1], [2,1,1,2], [2,1,1,3], [2,1,2,1], [2,1,3,1], [2,2,1,1], [2,3,1,1], [3,1,1,1], [3,1,1,2], [3,1,2,1], [3,2,1,1], [4,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Cf. A360971.
Programs
-
Maple
b:= proc(n, i, s, p) option remember; `if`(s+n*i<=p, 0, `if`(n=0 or i=1, 1/n!, add(b(n-j, i-1, s+i*j, p*i^j)/j!, j=0..n))) end: a:= n-> b(n$2, 0, 1)*n!: seq(a(n), n=0..44);