cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360592 G.f.: Sum_{k>=0} (1 + k*x)^k * x^k.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 149, 543, 2096, 8539, 36444, 162380, 752181, 3612037, 17933038, 91843329, 484280386, 2624400428, 14595111277, 83178971707, 485218783724, 2893881790823, 17628815344600, 109585578277012, 694575012732989, 4485139961090153, 29486515600393930
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 13 2023

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(add((1+k*x)^k*x^k, k=0..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Feb 13 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^k, {k, 0, n/2}], {n, 1, 30}]}]
  • PARI
    {a(n) = polcoeff(sum(m=0, n, (1 + m*x)^m * x^m + x*O(x^n)), n)};
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * (n-k)^k.
a(n) ~ exp(exp(1/2)*sqrt(n/2) - 3*exp(1)/8) * n^(n/2) / 2^(n/2 + 1) * (1 + ((exp(1/2) + exp(-1/2))/2^(5/2) + 11*exp(3/2)/2^(9/2))/sqrt(n)).