cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360746 a(n) is the maximum number of locations 1..n-1 which can be reached starting from a(n-1), where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 5, 5, 5, 7, 8, 8, 8, 9, 9, 12, 10, 10, 12, 10, 12, 13, 13, 13, 16, 14, 14, 16, 17, 17, 17, 18, 18, 24, 25, 25, 25, 26, 27, 27, 27, 27, 28, 28, 30, 28, 33, 28, 29, 30, 30, 30, 33, 31, 31, 31, 32, 32, 33, 33, 31, 31, 32, 33, 33, 35, 33, 37
Offset: 1

Views

Author

Neal Gersh Tolunsky, Feb 18 2023

Keywords

Examples

			a(7)=5 because we reach 5 terms starting from the most recent term a(6) (each line shows the next unvisited term(s) we can reach from the term(s) in the previous iteration):
1, 1, 2, 3, 4, 4
   1<----------4
1, 1, 2, 3, 4, 4
1<-1->2
1, 1, 2, 3, 4, 4
      2---->4
From the last iteration we can visit no new terms. We reached 5 terms, so a(7)=5:
1, 1, 2, 3, 4, 4
1  1  2     4  4
		

Crossrefs

Programs

  • PARI
    See Links section.
  • Python
    def A(lastn,mode=0):
      a,n,t=[1],0,1
      while n0:
          if not d[-1][-1] in rr:rr.append(d[-1][-1])
          if d[-1][-1]-a[d[-1][-1]]>=0:
            if d[-1].count(d[-1][-1]-a[d[-1][-1]])0: d.append(d[-1][:])
              d[-1].append(d[-1][-1]+a[d[-1][-1]])
              r=1
          if g>0:
            if r>0: d[-2].append(d[-2][-1]-a[d[-2][-1]])
            else: d[-1].append(d[-1][-1]-a[d[-1][-1]])
            r=1
          if r==0:d.pop()
          r,g=0,0
        a.append(len(rr))
        n+=1
        print(n+1,a[n])
        if mode>0: print(a)
      return a  # S. Brunner, Feb 26 2023
    

A360593 Each term a(i) can reach a(i+a(i)) and a(i-a(i)) if these terms exist. a(n) is the greatest number of terms among a(1..n-1) that can be reached by starting at a(n-1) and visiting no term more than once; a(0)=0. See example.

Original entry on oeis.org

0, 1, 2, 2, 4, 2, 6, 2, 7, 5, 6, 6, 9, 10, 10, 6, 8, 7, 9, 8, 11, 8, 12, 14, 12, 14, 19, 16, 19, 14, 14, 16, 14, 21, 14, 16, 21, 14, 14, 16, 14, 18, 14, 16, 21, 21, 19, 21, 22, 22, 21, 23, 24, 24, 29, 29, 22, 26, 24, 28, 24, 26, 31, 24, 31, 34, 24, 30, 34, 29, 39
Offset: 0

Views

Author

S. Brunner, Feb 13 2023

Keywords

Comments

For clarification:
The terms of the sequence so far are written as a one-dimensional grid, and from every term a(i) you can jump back or forth a(i) terms, without i getting < 0 or > n, as these terms don't exist. Then search for the longest possible chain of jumps you can do starting at a(n) and visiting no term more than once. The number of targets visited by this chain is the next term of the sequence.
A chain of jumps C always starts at n, with C1 = a(n-1). Then the first jump always has to go back C1 terms, so C2 = a(n-1-C1) = a(n-1-a(n-1)), and then it continues with jumping back or forth C2 terms, whichever produces the longest chain of jumps:
C3 = a(n-1-C1-C2) or a(n-1-C1+C2),
C4 = a(n-1-C1{-/+}C2{-/+}C3), etc.
The first numbers which appear to be missing from this sequence are:
3, 13, 15, 17, 20, 25, 27, 32, 33, 36, 43, 44, 48, 50, 51, 62, 63, 69, 70, 71, 75, 77, 78, 80, etc.

Examples

			This example shows the longest chain of jumps starting with a(7)=2:
0, 1, 2, 2, 4, 2, 6, 2
   1<----2<----2<----2
    ->2---->4
0<----------
It visited the 7 terms 2,2,2,1,2,4,0. So a(8)=7.
		

Crossrefs

Programs

  • Python
    def A(lastn,times=1,mode=0):
      a,n=[0],0
      while n0:
          if len(d[-1])>v: v,o=len(d[-1]),d[-1][:]
          if d[-1][-1]-a[d[-1][-1]]>=0:
            if d[-1].count(d[-1][-1]-a[d[-1][-1]])0: d.append(d[-1][:])
              d[-1].append(d[-1][-1]+a[d[-1][-1]])
              r=1
          if g>0:
            if r>0: d[-2].append(d[-2][-1]-a[d[-2][-1]])
            else: d[-1].append(d[-1][-1]-a[d[-1][-1]])
            r=1
          if r==0:d.pop()
          r,g=0,0
        a.append(v)
        n+=1
        if mode==0: print(n,a[n])
        if mode>0:
          u,q=0,[]
          while u
    				

A361383 a(n) is the number of locations 1..n-1 which can be reached starting from location i=a(n-1), where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 4, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 15, 16, 15, 16, 15, 18, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 22, 24, 22, 24, 23, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 29, 32, 33, 35, 32, 35, 32, 35, 32, 35, 32, 35, 32, 36, 35, 37
Offset: 1

Views

Author

Neal Gersh Tolunsky, Mar 09 2023

Keywords

Comments

For clarification: We start at the term with index a(n-1). From each term at index i, we can jump to up to two locations, which are a(i) terms away in either direction. We continue this process from the terms we have reached until we have visited all possible terms.

Examples

			We find a(8)=4 by first looking at the previous term in the sequence so far (1,1,2,3,3,4,5), which is a(7)=5. This tells us to start at location i=5. Permitted steps can reach 4 locations as follows:
  1, 1, 2, 3, 3, 4, 5
     1<-------3
  1, 1, 2, 3, 3, 4, 5
  1<-1->2
Steps from each of these locations cannot reach anything new, so a(8)=4. The reachable terms are:
  1, 1, 2, 3, 3, 4, 5
  1  1  2     3
		

Crossrefs

Extensions

More terms from Samuel Harkness, Mar 10 2023
Showing 1-3 of 3 results.