cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360626 Number of multisets of nonempty words over binary alphabet where each letter occurs n times.

Original entry on oeis.org

1, 3, 21, 131, 830, 5066, 30456, 179256, 1038593, 5928071, 33402561, 186021335, 1025162709, 5596047683, 30282832593, 162573152651, 866385400935, 4585861723905, 24120596727003, 126124094912499, 655868112470175, 3393060517486981, 17468543071082489
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2023

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {ab}, {ba}, {a,b}.
a(2) = 21: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ab}, {ab,ba}, {aba,b}, {b,baa}, {ba,ba}, {a,a,bb}, {a,ab,b}, {a,b,ba}, {aa,b,b}, {a,a,b,b}.
		

Crossrefs

Cf. A055375, A359962, A360638 (the same for sets).

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    a:= n-> coeff(b(2*n$2), x, n):
    seq(a(n), n=0..31);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    a[n_] := Coefficient[b[2n, 2n], x, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)

Formula

a(n) = [x^(2n)*y^n] Product_{i>=1} Product_{j=0..i} 1/(1-x^i*y^j)^binomial(i,j).
a(n) = A055375(2n,n).