A360634 Number T(n,k) of sets of nonempty words over binary alphabet with a total of n letters of which k are the first letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 1, 3, 1, 2, 6, 6, 2, 2, 11, 16, 11, 2, 3, 18, 37, 37, 18, 3, 4, 28, 73, 100, 73, 28, 4, 5, 42, 133, 228, 228, 133, 42, 5, 6, 61, 227, 470, 593, 470, 227, 61, 6, 8, 86, 370, 899, 1370, 1370, 899, 370, 86, 8, 10, 119, 580, 1617, 2894, 3497, 2894, 1617, 580, 119, 10
Offset: 0
Examples
T(4,0) = 2: {bbbb}, {b,bbb}. T(4,1) = 11: {abbb}, {babb}, {bbab}, {bbba}, {a,bbb}, {ab,bb}, {abb,b}, {b,bab}, {b,bba}, {ba,bb}, {a,b,bb}. T(4,2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}. Triangle T(n,k) begins: 1; 1, 1; 1, 3, 1; 2, 6, 6, 2; 2, 11, 16, 11, 2; 3, 18, 37, 37, 18, 3; 4, 28, 73, 100, 73, 28, 4; 5, 42, 133, 228, 228, 133, 42, 5; 6, 61, 227, 470, 593, 470, 227, 61, 6; 8, 86, 370, 899, 1370, 1370, 899, 370, 86, 8; 10, 119, 580, 1617, 2894, 3497, 2894, 1617, 580, 119, 10; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..15);
-
Mathematica
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]]; T[n_] := CoefficientList[b[n, n], x]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
Formula
T(n,k) = T(n,n-k).
Sum_{k=0..2n} (-1)^k*T(2n,k) = A200751(n). - Alois P. Heinz, Sep 09 2023