cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360636 Triangle read by rows. T(n, m) = (1/(n + 1)) * C(n + 1, m) * 4^n * C((3*n - m + 1)/2 - 1, n) if n is odd, otherwise (1/(n + 1)) * C(n + 1, m) * C((3*n - m)/2, n) * C(3*n - m, (3*n - m)/2) / C(n - m, (n - m)/2).

Original entry on oeis.org

1, 2, 2, 10, 16, 6, 64, 140, 96, 20, 462, 1280, 1260, 512, 70, 3584, 12012, 15360, 9240, 2560, 252, 29172, 114688, 180180, 143360, 60060, 12288, 924, 245760, 1108536, 2064384, 2042040, 1146880, 360360, 57344, 3432
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 14 2023

Keywords

Examples

			Triangle T(n, m) begins:
[0]     1;
[1]     2,      2;
[2]    10,     16,      6;
[3]    64,    140,     96,     20;
[4]   462,   1280,   1260,    512,    70;
[5]  3584,  12012,  15360,   9240,  2560,   252;
[6] 29172, 114688, 180180, 143360, 60060, 12288, 924;
		

Crossrefs

Cf. A078531, A000984, A151403 (row sums).

Programs

  • Maple
    T := (n, k) -> ifelse(n mod 2 = 1, 4^n*((3*n - k - 1)/2)! / (k!*(n + 1 - k)! * ((n - k - 1)/2)!), binomial(n + 1, k) * ((n - k)/2)! * (3*n - k)! / (((3*n - k)/2)! * (n + 1)! * (n - k)!)): for n from 0 to 6 do seq(simplify(T(n, k)), k=0..n) od;
    # Alternative:
    gf := ((1 - 4*x*y)*sin(arcsin((216*x^2) / (1 - 4*x*y)^3 - 1)/3))/(6*x) + (1 - 4*x*y) / (12*x): assume(x > 0); serx := series(gf, x, 9): poly := n -> simplify(coeff(serx, x, n)): seq(print(seq(coeff(poly(n), y, k), k = 0..n)), n = 0..6); # Peter Luschny, Feb 15 2023
  • Maxima
    T(n,m):=if n
    				

Formula

G.f.: ((1 - 4*x*y)*sin(arcsin((216*x^2) / (1 - 4*x*y)^3 - 1)/3))/(6*x) + (1 - 4*x*y) / (12*x).