A360650 Number of sets of nonempty words over binary alphabet with a total of n letters of which 2 are the first letter.
0, 0, 1, 6, 16, 37, 73, 133, 227, 370, 580, 881, 1305, 1890, 2687, 3756, 5175, 7037, 9460, 12582, 16577, 21649, 28048, 36070, 46072, 58474, 73778, 92574, 115559, 143551, 177510, 218556, 267997, 327355, 398394, 483162, 584023, 703708, 845361, 1012600, 1209573
Offset: 0
Keywords
Examples
a(2) = 1: {aa}. a(3) = 6: {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}. a(4) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=2 of A360634.
Programs
-
Maple
g:= proc(n, i, j) option remember; convert(series(`if`(j=0, 1, `if`(i<0, 0, add(g(n, i-1, j-k)*x^(i*k)*binomial( binomial(n, i), k), k=0..j))), x, 3), polynom) end: b:= proc(n, i) option remember; convert(series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))), x, 3), polynom) end: a:= n-> coeff(b(n$2), x, 2): seq(a(n), n=0..45);
Formula
a(n) = A360634(n,2).