cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360661 Number of factorizations of n into a prime number of factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 1, 1, 2, 3, 0, 4, 0, 5, 1, 1, 1, 7, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 9, 1, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 9, 0, 1, 3, 7, 1, 4, 0, 3, 1, 4, 0, 12, 0, 1, 3, 3, 1, 4, 0, 9, 3, 1, 0, 9, 1, 1, 1, 5, 0, 9, 1, 3, 1, 1, 1, 13, 0, 3, 3, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 15 2023

Keywords

Comments

From Bernard Schott, Mar 25 2023: (Start)
a(n) depends only on the prime signature of n.
a(n) = 0 iff n is in A008578 (1 with primes).
a(n) = 1 iff n is in A001358 (semiprimes).
a(n) = 2 iff n is in A030078 (p^3).
a(n) = 3 iff n is in A080258 (p^4 or p*q^2).
a(n) = 4 iff n is in A007304 (p*q*r). (End)

Examples

			a(2) = 0 since 2 = 2 is the unique factorization of 2.
a(4) = 1 since 4 = 2^2 = 2 * 2.
a(6) = 1 since 6 = 2 * 3.
a(8) = 2 since 8 = 2^3 = 2 * 4 = 2 * 2 * 2.
a(12) = 3 since 12 = 3 * 2^2 = 2 * 6 = 3 * 4 = 2 * 2 * 3.
a(16) = 3 since 16 = 2^4 = 2 * 8 = 4 * 4 = 2 * 2 * 4.
a(30) = 4 since 30 = 2 * 3 * 5 = 2 * 15 = 3 * 10 = 5 * 6.
		

Crossrefs

Formula

From Bernard Schott, Mar 25 2023: (Start)
a(A000040(n)) = 0.
a(A001248(n)) = a(A006881(n)) = 1.
a(A030514(n)) = a(A054753(n)) = 3. (End)