cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360667 Triangle read by rows: T(n,m)=4^(n-1)*C(n,m)*C(3*n/2-2,n-1)/n, for 0 <= m <= n, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 10, 30, 30, 10, 64, 256, 384, 256, 64, 462, 2310, 4620, 4620, 2310, 462, 3584, 21504, 53760, 71680, 53760, 21504, 3584, 29172, 204204, 612612, 1021020, 1021020, 612612, 204204, 29172, 245760, 1966080, 6881280, 13762560, 17203200, 13762560, 6881280, 1966080, 245760
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 16 2023

Keywords

Examples

			Triangle T(n, m) starts:
[0] 1;
[1] 1,     1;
[2] 2,     4,      2;
[3] 10,    30,     30,       10;
[4] 64,    256,    384,      256,    64;
[5] 462,   2310,   4620,     4620,   2310,    462;
[6] 3584,  21504,  53760,    71680,  53760,   21504,    3584;
[7] 29172, 204204, 612612,   1021020,1021020, 612612,   204204,  29172;
		

Crossrefs

Cf. A078531.

Programs

  • Mathematica
    T[0, 0] = 1;
    T[n_, m_] := 4^(n-1)*Binomial[n, m]*Binomial[3n/2-2, n-1]/n;
    Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2023 *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else (4^(n-1)*binomial(n,m)*binomial((3*n)/2-2,n-1))/(n);

Formula

G.f.: sin(arcsin(216*x^2*(y+1)^2-1)/3)/6+13/12.
G.f.: 1+x*(sqrt(3)/2)*(sech(arccosh(-sqrt(108)*x*(1+y))/3))*(1+y).