A360680 Numbers for which the prime signature has the same mean as the first differences of 0-prepended prime indices.
1, 2, 6, 30, 49, 152, 210, 513, 1444, 1776, 1952, 2310, 2375, 2664, 2760, 2960, 3249, 3864, 3996, 4140, 4144, 5796, 5994, 6072, 6210, 6440, 6512, 6517, 6900, 7176, 7400, 7696, 8694, 9025, 9108, 9384, 10064, 10120, 10350, 10488, 10764, 11248, 11960, 12167
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 6: {1,2} 30: {1,2,3} 49: {4,4} 152: {1,1,1,8} 210: {1,2,3,4} 513: {2,2,2,8} 1444: {1,1,8,8} 1776: {1,1,1,1,2,12} 1952: {1,1,1,1,1,18} 2310: {1,2,3,4,5} 2375: {3,3,3,8} 2664: {1,1,1,2,2,12} 2760: {1,1,1,2,3,9} 2960: {1,1,1,1,3,12} For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with mean 3/2. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with mean also 3/2. So 2760 is in the sequence.
Crossrefs
For median instead of mean we have A360681.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Mean[Length/@Split[prix[#]]] == Mean[Differences[Prepend[prix[#],0]]]&]
Comments